Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chemistry ; 28(70): e202201875, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36129399

RESUMEN

Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.


Asunto(s)
Compuestos Férricos , Hierro , Compuestos Férricos/química , Modelos Moleculares , Catálisis , Hierro/química , Compuestos Ferrosos/química
2.
Chemphyschem ; 23(2): e202100399, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34633731

RESUMEN

Mixed-valence non-heme diiron centers are present at the active sites of a few enzymes and confer them interesting reactivities with the two ions acting in concert. Related (µ-phenoxido)diiron complexes have been developed as enzyme mimics. They exhibit very rich spectroscopic properties enabling independent monitoring of each individual ion, which proved useful for mechanistic studies of catalytic hydrolysis and oxidation reactions. In our studies of such complexes, we observed that these compounds give rise to a wide variety of electron transfers (intervalence charge transfer), proton transfers (tautomerism), coupled electron and proton transfers (H. abstraction and PCET). In this minireview, we present and analyze the main results illustrating the latter aspects.


Asunto(s)
Electrones , Protones , Compuestos Férricos/química , Compuestos Ferrosos/química , Oxidación-Reducción
3.
Chem Commun (Camb) ; 57(95): 12836-12839, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34787138

RESUMEN

In the context of bioinspired OAT catalysis, we developed a tetradentate dipyrrinpyridine ligand, a hybrid of hemic and non-hemic models. The catalytic activity of the iron(III) derivative was investigated in the presence of iodosylbenzene. Unexpectedly, MS, EPR, Mössbauer, UV-visible and FTIR spectroscopic signatures supported by DFT calculations provide convincing evidence for the involvement of a relevant FeIII-O-NPy active intermediate.


Asunto(s)
Compuestos Férricos/química , Oxígeno/química , Piridinas/química , Modelos Moleculares , Estructura Molecular
4.
Dalton Trans ; 50(19): 6512-6519, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33908990

RESUMEN

Multicomponent reactions are attracting strong interest because they contribute to develop more efficient synthetic chemistry. Understanding their mechanism at the molecular level is thus an important issue to optimize their operation. The development of integrated experimental and theoretical approaches has very recently emerged as most powerful to achieve this goal. In the wake of our recent investigation of amidine synthesis, we used this approach to explore how an Fe-catalyzed aziridination can lead to an imidazoline when run in acetonitrile. We report that the synthesis of imidazoline by combination of styrene, acetonitrile, an iron catalyst and a nitrene precursor occurs along a new kind of multicomponent reaction. The formation of imidazoline results from acetonitrile interception of a benzyl radical styrene aziridination intermediate within Fe coordination sphere, as opposed to classical nucleophilic opening of the aziridine by a Lewis acid. Comparison of this mechanism to that of amidine formation allows a rationalization of the modes of intermediates trapping by acetonitrile according to the oxidation state Fe active species. The molecular understanding of these processes may help to design other multicomponent reactions.

5.
Angew Chem Int Ed Engl ; 56(15): 4305-4309, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28295906

RESUMEN

The development of iron catalysts for carbon-heteroatom bond formation, which has attracted strong interest in the context of green chemistry and nitrene transfer, has emerged as the most promising way to versatile amine synthetic processes. A diiron system was previously developed that proved efficient in catalytic sulfimidations and aziridinations thanks to an FeIII FeIV active species. To deal with more demanding benzylic and aliphatic substrates, the catalyst was found to activate itself to a FeIII FeIV L. active species able to catalyze aliphatic amination. Extensive DFT calculations show that this activation event drastically enhances the electron affinity of the active species to match the substrates requirements. Overall this process consists in a redox self-adaptation of the catalyst to the substrate needs.

6.
Inorg Chem ; 54(13): 6257-66, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26091015

RESUMEN

We have previously investigated cis/trans isomerization processes in phenoxido-bridged mixed-valent Fe(II)Fe(III) complexes that contain either one aniline or one anilide ligand. In this work, we compare the properties of similar complexes bearing one terminal protic ligand, either aniline or 1H-benzimidazole. Whatever the ligand, (1)H NMR spectroscopy clearly evidences that the complexes are present in CH3CN as a mixture of cis- and trans-isomers in a close to 1:1 ratio. We show here that addition of NEt3 indeed allows the deprotonation of these ligands, the resulting complexes bearing either anilide or benzimidazolide that are coordinated to the ferric site. The latter are singular examples of a high-spin ferric ion coordinated to a benzimidazolide ligand. Whereas the trans-isomer of the anilide complex is the overwhelming species, benzimidazolide species are mixtures of cis- and trans-isomers in equal proportions. Moreover, cyclic voltammametry studies show that Fe(III)Fe(III) complexes with 1H-benzimidazole are more stable than their aniline counterparts, whereas the reverse is observed for the deprotonated species.

7.
Chemistry ; 21(22): 8064-8, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25892481

RESUMEN

Identifying the active nucleophile in hydrolysis reactions catalyzed by binuclear hydrolases is a recurrent problem and a matter of intense debate. We report on the phosphate ester hydrolysis by a Fe(III)Fe(II) complex of a binucleating ligand. This complex presents activities in the range of those observed for similar biomimetic compounds in the literature. The specific electronic properties of the Fe(III)Fe(II) complex allowed us to use (1)H NMR and Mössbauer spectroscopies to investigate the nature of the various species present in the solution in the pH range of 5-10. Both techniques showed that the hydrolysis activity is associated to a µ-hydroxido Fe(III)Fe(II) species. Further (1)H NMR experiments show that binding of anions or the substrate changes this bonding mode suggesting that a terminal hydroxide is the likely nucleophile in these hydrolysis reactions. This view is further supported by the structure determination of the hydrolysis product.


Asunto(s)
2,4-Dinitrofenol/análogos & derivados , Compuestos Férricos/química , Compuestos Ferrosos/química , Hidróxidos/química , Organofosfatos/química , 2,4-Dinitrofenol/química , Concentración de Iones de Hidrógeno , Hidrólisis , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectroscopía de Mossbauer
8.
Inorg Chem ; 53(19): 10060-9, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25254906

RESUMEN

We have recently reported a deprotonation-induced valence inversion within a phenoxido-bridged mixed-valent diiron(II,III) complex. The initial aniline coordinated to the Fe(II) site reacts with triethylamine, and the resulting complex contains an anilide ligand coordinated to the Fe(III) ion. The behavior of these complexes in acetonitrile is indeed more intricate. Owing to the very distinctive spectroscopic signatures of the complexes, the conjunction of NMR, Mössbauer, and UV-visible absorption spectroscopies allows one to evidence two isomerization reactions, one involving the aniline linked to Fe(II) and the other the anilide on Fe(III). Theoretical calculations sustain this conclusion. Aniline in the cis position versus the bridging phenoxide is shown to be the most stable isomer while the anilide trans to the phenoxido bridge is favored. The trans isomer of the aniline complex is more acidic than the cis one by 1 pKa unit. Isomerization of the anilide complex is 10 times faster than the analogous isomerization of the aniline complex. Both reactions are proposed to proceed through a unique mechanism. This is the first time that such isomerization reactions are evidenced in dinuclear complexes.

9.
Angew Chem Int Ed Engl ; 53(6): 1580-4, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24421270

RESUMEN

Metal-catalyzed nitrene transfer reactions arouse intense interest as clean and efficient procedures for amine synthesis. Efficient Rh- and Ru-based catalysts exist but Fe alternatives are actively pursued. However, reactive iron imido species can be very short-lived and getting evidence of their occurrence in efficient nitrene-transfer reactions is an important challenge. We recently reported that a diiron(III,II) complex is a very efficient nitrene-transfer catalyst to various substrates. We describe herein how, by combining desorption electrospray ionization mass spectrometry, quantitative chemical quench experiments, and DFT calculations, we obtained conclusive evidence for the occurrence of an {Fe(III) Fe(IV) NTosyl} intermediate that is very active in H-abstraction and nitrene-transfer reactions. DFT calculations revealed a strong radical character of the tosyl nitrogen atom in very low-lying electronic configurations of the Fe(IV) ion which are likely to confer its high reactivity.


Asunto(s)
Imidazoles/química , Iminas/química , Hierro/química , Catálisis , Complejos de Coordinación/química , Conformación Molecular , Espectrometría de Masa por Ionización de Electrospray
10.
Nat Chem ; 4(12): 1024-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23174983

RESUMEN

High-valent oxo-metal complexes are involved in key biochemical processes of selective oxidation and removal of xenobiotics. The catalytic properties of cytochrome P-450 and soluble methane monooxygenase enzymes are associated with oxo species on mononuclear iron haem and diiron non-haem platforms, respectively. Bio-inspired chemical systems that can reproduce the fascinating ability of these enzymes to oxidize the strongest C-H bonds are the focus of intense scrutiny. In this context, the development of highly oxidizing diiron macrocyclic catalysts requires a structural determination of the elusive active species and elucidation of the reaction mechanism. Here we report the preparation of an Fe(IV)(µ-nitrido)Fe(IV) = O tetraphenylporphyrin cation radical species at -90 °C, characterized by ultraviolet-visible, electron paramagnetic resonance and Mössbauer spectroscopies and by electrospray ionization mass spectrometry. This species exhibits a very high activity for oxygen-atom transfer towards alkanes, including methane. These findings provide a foundation on which to develop efficient and clean oxidation processes, in particular transformations of the strongest C-H bonds.


Asunto(s)
Metaloporfirinas/química , Metano/química , Nitrógeno/química , Clorobenzoatos/química , Oxidación-Reducción , Espectrometría de Masa por Ionización de Electrospray
11.
Inorg Chem ; 50(14): 6408-10, 2011 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-21671656

RESUMEN

The coupling of electron and proton transfers is currently under intense scrutiny. This Communication reports a new kind of proton-coupled electron transfer within a homodinuclear first-row transition-metal complex. The triply-bridged complex [Fe(III)(µ-OPh)(µ(2)-mpdp)Fe(II)(NH(2)Bn)] (1; mpdp(2-) = m-phenylenedipropionate) bearing a terminal aminobenzyl ligand can be reversibly deprotonated to the anilinate complex 2 whose core [Fe(II)(µ-OPh)(µ(2)-mpdp)Fe(III)(NHBn)] features an inversion of the iron valences. This observation is supported by a combination of UV-visible, (1)H NMR, and Mössbauer spectroscopic studies.


Asunto(s)
Compuestos Férricos/química , Compuestos Ferrosos/química , Cristalografía por Rayos X , Electrones , Ligandos , Modelos Moleculares , Conformación Molecular , Protones , Estereoisomerismo
13.
Chem Commun (Camb) ; (4): 480-2, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15654376

RESUMEN

In the presence of hydrogen peroxide, m-chloroperbenzoic acid or an iodosyl arene, the tert-butyl group of the ligand H(L-t-Bu) in the complex [Fe2(L-t-Bu)(mpdp)]2+ is quantitatively hydroxylated to a butanolate terminally bound to one iron in [Fe2(L-t-Bu - H + O)(mpdp)]2+, and mass spectrometry experiments indicate that the reaction proceeds according to different mechanisms.


Asunto(s)
Compuestos Férricos/química , Compuestos Ferrosos/química , Oxígeno/química , Hidroxilación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA