RESUMEN
Mitosis, under the control of the microtubule-based mitotic spindle, is an attractive target for anti-cancer treatments, as cancer cells undergo frequent and uncontrolled cell divisions. Microtubule targeting agents that disrupt mitosis or single molecule inhibitors of mitotic kinases or microtubule motors kill cancer cells with a high efficacy. These treatments have, nevertheless, severe disadvantages: they also target frequently dividing healthy tissues, such as the haematopoietic system, and they often lose their efficacy due to primary or acquired resistance mechanisms. An alternative target that has emerged in dividing cancer cells is their ability to "cluster" the poles of the mitotic spindle into a bipolar configuration. This mechanism is necessary for the specific survival of cancer cells that tend to form multipolar spindles due to the frequent presence of abnormal centrosome numbers or other spindle defects. Here we discuss the recent development of combinatorial treatments targeting spindle pole clustering that specifically target cancer cells bearing aberrant centrosome numbers and that have the potential to avoid resistance mechanism due their combinatorial nature.
Asunto(s)
Antineoplásicos/uso terapéutico , Muerte Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Polos del Huso/efectos de los fármacos , Antineoplásicos/farmacología , Centrosoma/efectos de los fármacos , Centrosoma/metabolismo , Combinación de Medicamentos , Sinergismo Farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Mitosis/efectos de los fármacos , Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Polos del Huso/metabolismoRESUMEN
Lack of relevant preclinical models that reliably recapitulate the complexity and heterogeneity of human cancer has slowed down the development and approval of new anti-cancer therapies. Even though two-dimensional in vitro culture models remain widely used, they allow only partial cell-to-cell and cell-to-matrix interactions and therefore do not represent the complex nature of the tumor microenvironment. Therefore, better models reflecting intra-tumor heterogeneity need to be incorporated in the drug screening process to more reliably predict the efficacy of drug candidates. Classic methods of modelling colorectal carcinoma (CRC), while useful for many applications, carry numerous limitations. In this review, we address the recent advances in in vitro CRC model systems, ranging from conventional CRC patient-derived models, such as conditional reprogramming-based cell cultures, to more experimental and state-of-the-art models, such as cancer-on-chip platforms or liquid biopsy.
RESUMEN
A rod-shaped, motile anaerobic bacterium, designated CCRI-22567T, was isolated from a vaginal sample of a woman diagnosed with bacterial vaginosis and subjected to a polyphasic taxonomic study. The novel strain was capable of growth at 30-42 °C (optimum, 42 °C), at pH 5.5-8.5 (optimum, pH 7.0-7.5) and in the presence of 0-1.5â% (w/v) NaCl (optimally at 0.5â% NaCl). The phylogenetic trees based on 16S rRNA gene sequences showed that strain CCRI-22567T forms a distinct evolutionary lineage independent of other taxa in the family Peptostreptococcaceae. Strain CCRI-22567T exhibited 90.1â% 16S rRNA gene sequence similarity to Peptoanaerobacter stomatis ACC19aT and 89.7â% to Eubacterium yurii subsp. schtitka ATCC 43716. The three closest organisms with an available whole genome were compared to strain CCRI-22567T for genomic relatedness assessment. The genomic average nucleotide identities (OrthoANIu) obtained with Peptoanaerobacter stomatis ACC19aT, Eubacterium yurii subsp. margaretiae ATCC 43715 and Filifactor alocis ATCC 35896T were 71.8, 70.3 and 69.6â%, respectively. Strain CCRI-22567T contained C18â:â1 ω9c and C18â:â1 ω9c DMA as the major fatty acids. The DNA G+C content of strain CCRI-22567T based on its genome sequence was 33.8âmol%. On the basis of the phylogenetic, chemotaxonomic and other phenotypic properties, strain CCRI-22567T is considered to represent a new genus and species within the family Peptostreptococcaceae, for which the name Criibacterium bergeronii gen. nov., sp. nov., is proposed. The type strain of Criibacterium bergeronii is CCRI-22567T (=LMG 31278T=DSM 107614T=CCUG 72594T).