Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Genomics ; 17(1): 16, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36859317

RESUMEN

BACKGROUND: Congenital hydrocephalus is characterized by ventriculomegaly, defined as a dilatation of cerebral ventricles, and thought to be due to impaired cerebrospinal fluid (CSF) homeostasis. Primary congenital hydrocephalus is a subset of cases with prenatal onset and absence of another primary cause, e.g., brain hemorrhage. Published series report a Mendelian cause in only a minority of cases. In this study, we analyzed exome data of PCH patients in search of novel causal genes and addressed the possibility of an underlying oligogenic mode of inheritance for PCH. MATERIALS AND METHODS: We sequenced the exome in 28 unrelated probands with PCH, 12 of whom from families with at least two affected siblings and 9 of whom consanguineous, thereby increasing the contribution of genetic causes. Patient exome data were first analyzed for rare (MAF < 0.005) transmitted or de novo variants. Population stratification of unrelated PCH patients and controls was determined by principle component analysis, and outliers identified using Mahalanobis distance 5% as cutoff. Patient and control exome data for genes biologically related to cilia (SYScilia database) were analyzed by mutation burden test. RESULTS: In 18% of probands, we identify a causal (pathogenic or likely pathogenic) variant of a known hydrocephalus gene, including genes for postnatal, syndromic hydrocephalus, not previously reported in isolated PCH. In a further 11%, we identify mutations in novel candidate genes. Through mutation burden tests, we demonstrate a significant burden of genetic variants in genes coding for proteins of the primary cilium in PCH patients compared to controls. CONCLUSION: Our study confirms the low contribution of Mendelian mutations in PCH and reports PCH as a phenotypic presentation of some known genes known for syndromic, postnatal hydrocephalus. Furthermore, this study identifies novel Mendelian candidate genes, and provides evidence for oligogenic inheritance implicating primary cilia in PCH.


Asunto(s)
Hidrocefalia , Herencia Multifactorial , Femenino , Embarazo , Humanos , Mutación , Consanguinidad , Bases de Datos Factuales
2.
Clin Genet ; 103(3): 346-351, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36371792

RESUMEN

Bi-allelic variants affecting one of the four genes encoding the AP4 subunits are responsible for the "AP4 deficiency syndrome." Core features include hypotonia that progresses to hypertonia and spastic paraplegia, intellectual disability, postnatal microcephaly, epilepsy, and neuroimaging features. Namely, AP4M1 (SPG50) is involved in autosomal recessive spastic paraplegia 50 (MIM#612936). We report on three patients with core features from three unrelated consanguineous families originating from the Middle East. Exome sequencing identified the same homozygous nonsense variant: NM_004722.4(AP4M1):c.1012C>T p.Arg338* (rs146262009). So far, four patients from three other families carrying this homozygous variant have been reported worldwide. We describe their phenotype and compare it to the phenotype of patients with other variants in AP4M1. We construct a shared single-nucleotide polymorphism (SNP) haplotype around AP4M1 in four families and suggest a probable founder effect of Arg338* AP4M1 variant with a common ancestor most likely of Turkish origin.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Paraplejía Espástica Hereditaria , Humanos , Discapacidad Intelectual/genética , Mutación/genética , Efecto Fundador , Paraplejía/genética , Paraplejía Espástica Hereditaria/genética , Epilepsia/genética , Linaje , Fenotipo
3.
Front Med (Lausanne) ; 9: 976248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37265662

RESUMEN

Background: Renal operational tolerance is a rare and beneficial state of prolonged renal allograft function in the absence of immunosuppression. The underlying mechanisms are unknown. We hypothesized that tolerance might be driven by inherited protein coding genetic variants with large effect, at least in some patients. Methods: We set up a European survey of over 218,000 renal transplant recipients and collected DNAs from 40 transplant recipients who maintained good allograft function without immunosuppression for at least 1 year. We performed an exome-wide association study comparing the distribution of moderate to high impact variants in 36 tolerant patients, selected for genetic homogeneity using principal component analysis, and 192 controls, using an optimal sequence-kernel association test adjusted for small samples. Results: We identified rare variants of HOMER2 (3/36, FDR 0.0387), IQCH (5/36, FDR 0.0362), and LCN2 (3/36, FDR 0.102) in 10 tolerant patients vs. 0 controls. One patient carried a variant in both HOMER2 and LCN2. Furthermore, the three genes showed an identical variant in two patients each. The three genes are expressed at the primary cilium, a key structure in immune responses. Conclusion: Rare protein coding variants are associated with operational tolerance in a sizable portion of patients. Our findings have important implications for a better understanding of immune tolerance in transplantation and other fields of medicine.ClinicalTrials.gov, identifier: NCT05124444.

4.
Mol Genet Genomic Med ; 9(10): e1776, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34480423

RESUMEN

BACKGROUND: Premature ovarian insufficiency (POI) is a heterogeneous clinical syndrome defined by a premature loss of ovarian function that associates menstrual disturbances and hypergonatropic hypogonadism. POI is a major cause of female infertility affecting 1% of women before the age of 40 and up to 0.01% before the age of 20. The etiology of POI may be iatrogenic, auto-immune or genetic but remains however undetermined in a large majority of cases. An underlying genetic etiology has to be searched in idiopathic cases, particularly in the context of a family history of POI. METHODS: Whole exome sequencing (WES) was performed in trio in a Belgian patient presenting POI and in her two parents. The patient presented delayed puberty and primary amenorrhea with hypergonadotropic hypogonadism. RESULTS: WES identified two novel compound heterozygous truncating mutations in the Newborn oogenesis homeobox (NOBOX) gene, c.826C>T (p.(Arg276Ter)) and c.1421del (p.(Gly474AlafsTer76)). Both mutations were confirmed by Sanger sequencing in the proband's sister who presented the same phenotype. Both variants were pathogenic and very likely responsible for the severe POI in this family. CONCLUSION: We report here for the first time compound heterozygous truncating mutations of NOBOX in outbred patients, generalizing biallelic NOBOX null mutations as a cause of severe POI with primary amenorrhea. In addition, our findings also suggest that NOBOX haploinsufficiency is tolerated.


Asunto(s)
Amenorrea/etiología , Heterocigoto , Proteínas de Homeodominio/genética , Mutación , Pubertad Tardía/etiología , Hermanos , Factores de Transcripción/genética , Adolescente , Alelos , Amenorrea/diagnóstico , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Linaje , Fenotipo , Pubertad Tardía/diagnóstico , Secuenciación del Exoma
5.
Mol Genet Genomic Med ; 9(9): e1768, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34402213

RESUMEN

BACKGROUND: Primary microcephaly (PM) is defined as a significant reduction in occipitofrontal circumference (OFC) of prenatal onset. Clinical and genetic heterogeneity of PM represents a diagnostic challenge. METHODS: We performed detailed phenotypic and genomic analyses in a large cohort (n = 169) of patients referred for PM and could establish a molecular diagnosis in 38 patients. RESULTS: Pathogenic variants in ASPM and WDR62 were the most frequent causes in non-consanguineous patients in our cohort. In consanguineous patients, microarray and targeted gene panel analyses reached a diagnostic yield of 67%, which contrasts with a much lower rate in non-consanguineous patients (9%). Our series includes 11 novel pathogenic variants and we identify novel candidate genes including IGF2BP3 and DNAH2. We confirm the progression of microcephaly over time in affected children. Epilepsy was an important associated feature in our PM cohort, affecting 34% of patients with a molecular confirmation of the PM diagnosis, with various degrees of severity and seizure types. CONCLUSION: Our findings will help to prioritize genomic investigations, accelerate molecular diagnoses, and improve the management of PM patients.


Asunto(s)
Consanguinidad , Epilepsia/genética , Genotipo , Microcefalia/genética , Fenotipo , Proteínas de Ciclo Celular/genética , Niño , Epilepsia/epidemiología , Epilepsia/patología , Femenino , Frecuencia de los Genes , Heterogeneidad Genética , Humanos , Incidencia , Masculino , Microcefalia/complicaciones , Microcefalia/patología , Proteínas del Tejido Nervioso/genética
6.
Hum Mol Genet ; 29(23): 3757-3764, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33205811

RESUMEN

Congenital hydrocephalus is a potentially devastating, highly heterogeneous condition whose genetic subset remains incompletely known. We here report a consanguineous family where three fetuses presented with brain ventriculomegaly and limb contractures and shared a very rare homozygous variant of KIDINS220, consisting of an in-frame deletion of three amino acids adjacent to the fourth transmembrane domain. Fetal brain imaging and autopsy showed major ventriculomegaly, reduced brain mass, and with no histomorphologic abnormalities. We demonstrate that the binding of KIDINS220 to TrkA is diminished by the deletion mutation. This family is the second that associates a KIDINS220 genetic variant with human ventriculomegaly and limb contractures, validating causality of the gene and indicating TrkA as a likely mediator of the phenotype.


Asunto(s)
Feto/patología , Hidrocefalia/patología , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Receptor trkA/metabolismo , Femenino , Feto/metabolismo , Homocigoto , Humanos , Hidrocefalia/etiología , Hidrocefalia/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Malformaciones del Sistema Nervioso/etiología , Malformaciones del Sistema Nervioso/metabolismo , Linaje , Receptor trkA/genética
7.
Hum Mutat ; 41(2): 512-524, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31696992

RESUMEN

Primary microcephaly (PM) is characterized by a small head since birth and is vastly heterogeneous both genetically and phenotypically. While most cases are monogenic, genetic interactions between Aspm and Wdr62 have recently been described in a mouse model of PM. Here, we used two complementary, holistic in vivo approaches: high throughput DNA sequencing of multiple PM genes in human patients with PM, and genome-edited zebrafish modeling for the digenic inheritance of PM. Exomes of patients with PM showed a significant burden of variants in 75 PM genes, that persisted after removing monogenic causes of PM (e.g., biallelic pathogenic variants in CEP152). This observation was replicated in an independent cohort of patients with PM, where a PM gene panel showed in addition that the burden was carried by six centrosomal genes. Allelic frequencies were consistent with digenic inheritance. In zebrafish, non-centrosomal gene casc5 -/- produced a severe PM phenotype, that was not modified by centrosomal genes aspm or wdr62 invalidation. A digenic, quadriallelic PM phenotype was produced by aspm and wdr62. Our observations provide strong evidence for digenic inheritance of human PM, involving centrosomal genes. Absence of genetic interaction between casc5 and aspm or wdr62 further delineates centrosomal and non-centrosomal pathways in PM.


Asunto(s)
Centrosoma/metabolismo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Patrón de Herencia , Microcefalia/diagnóstico , Microcefalia/genética , Animales , Bases de Datos Genéticas , Estudios de Asociación Genética/métodos , Humanos , Mutación , Sistemas de Lectura Abierta , Fenotipo , Transducción de Señal , Secuenciación del Exoma , Pez Cebra
8.
Artículo en Inglés | MEDLINE | ID: mdl-29693325

RESUMEN

BACKGROUND: Autosomal recessive intellectual disability (ARID) is vastly heterogeneous. Truncating mutations of TRAPPC9 were reported in 8 ARID families. Autosomal recessive primary microcephaly (MCPH) represents another subgroup of ARID, itself very heterogeneous, where the size of the brain is very small since birth. MCPH1 plays a role at the centrosome via a BRCT1 domain, and in DNA Damage Repair (DDR) via BRCT2 and BRCT3, and it is not clear which of these two mechanisms causes MCPH in man. METHODS: We studied the phenotype and sequenced the exome in two siblings with MCPH and their unaffected sister. RESULTS: Homozygous mutations of TRAPPC9 (p.Leu178Pro) and of MCPH1 (p.Arg741X) were found in both affected siblings. Brain MRI showed anomalies previously associated with TRAPPC9 defects, supporting the implication of TRAPPC9 in the phenotype. Importantly, the asymptomatic sister with normal head size was homozygous for the MCPH1 truncating mutation and heterozygous for the TRAPPC9 mutation. CONCLUSION: The affected siblings represent the first ARID cases with a TRAPPC9 missense mutation and with microcephaly of prenatal onset of. Furthermore, their unaffected sister represents strong evidence that the lack of MCPH1 BRCT3 domain does not cause MCPH in man, supporting a bifunctional model of MCPH1 where the centrosomal function is involved in brain volumic development and not the DDR function.

9.
Semin Cell Dev Biol ; 76: 76-85, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28912110

RESUMEN

Primary microcephaly (PM) refers to a congenitally small brain, resulting from insufficient prenatal production of neurons, and serves as a model disease for brain volumic development. Known PM genes delineate several cellular pathways, among which the centriole duplication pathway, which provide interesting clues about the cellular mechanisms involved. The general interest of the genetic dissection of PM is illustrated by the convergence of Zika virus infection and PM gene mutations on congenital microcephaly, with CENPJ/CPAP emerging as a key target. Physical (protein-protein) and genetic (digenic inheritance) interactions of Wdr62 and Aspm have been demonstrated in mice, and should now be sought in humans using high throughput parallel sequencing of multiple PM genes in PM patients and control subjects, in order to categorize mutually interacting genes, hence delineating functional pathways in vivo in humans.


Asunto(s)
Encéfalo/patología , Microcefalia/genética , Malformaciones del Sistema Nervioso/genética , Humanos , Microcefalia/patología , Mutación , Malformaciones del Sistema Nervioso/patología
10.
Hum Mutat ; 39(3): 319-332, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29243349

RESUMEN

Autosomal recessive microcephaly or microcephaly primary hereditary (MCPH) is a genetically heterogeneous neurodevelopmental disorder characterized by a reduction in brain volume, indirectly measured by an occipitofrontal circumference (OFC) 2 standard deviations or more below the age- and sex-matched mean (-2SD) at birth and -3SD after 6 months, and leading to intellectual disability of variable severity. The abnormal spindle-like microcephaly gene (ASPM), the human ortholog of the Drosophila melanogaster "abnormal spindle" gene (asp), encodes ASPM, a protein localized at the centrosome of apical neuroprogenitor cells and involved in spindle pole positioning during neurogenesis. Loss-of-function mutations in ASPM cause MCPH5, which affects the majority of all MCPH patients worldwide. Here, we report 47 unpublished patients from 39 families carrying 28 new ASPM mutations, and conduct an exhaustive review of the molecular, clinical, neuroradiological, and neuropsychological features of the 282 families previously reported (with 161 distinct ASPM mutations). Furthermore, we show that ASPM-related microcephaly is not systematically associated with intellectual deficiency and discuss the association between the structural brain defects (strong reduction in cortical volume and surface area) that modify the cortical map of these patients and their cognitive abilities.


Asunto(s)
Microcefalia/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Preescolar , Cognición , Estudios de Cohortes , Familia , Femenino , Estudios de Asociación Genética , Geografía , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Microcefalia/epidemiología
11.
BMC Med Genet ; 18(1): 48, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28464862

RESUMEN

BACKGROUND: Autosomal recessive defects of either the B1, E1, M1 or S1 subunit of the Adaptor Protein complex-4 (AP4) are characterized by developmental delay, severe intellectual disability, spasticity, and occasionally mild to moderate microcephaly of essentially postnatal onset. CASE PRESENTATION: We report on a patient with severe microcephaly of prenatal onset, and progressive spasticity, developmental delay, and severe intellectual deficiency. Exome sequencing showed a homozygous mutation in AP4M1, causing the replacement of an arginine by a stop codon at position 338 of the protein (p.Arg338X). The premature stop codon truncates the Mu homology domain of AP4M1, with predicted loss of function. Exome analysis also showed heterozygous variants in three genes, ATR, MCPH1 and BLM, which are known causes of autosomal recessive primary microcephaly. CONCLUSIONS: Our findings expand the AP4M1 phenotype to severe microcephaly of prenatal onset, and more generally suggest that the AP4 defect might share mechanisms of prenatal neuronal depletion with other genetic defects of brain development causing congenital, primary microcephaly.


Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Microcefalia/genética , Mutación , Humanos , Recién Nacido , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA