Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Dev Dyn ; 248(12): 1243-1256, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31566834

RESUMEN

BACKGROUND: Familial exudative vitreoretinopathy (FEVR) is a rare congenital disorder characterized by a lack of blood vessel growth to the periphery of the retina with secondary fibrovascular proliferation at the vascular-avascular junction. These structurally abnormal vessels cause leakage and hemorrhage, while the fibroproliferative scarring results in retinal dragging, detachment and blindness. Mutations in the FZD4 gene represent one of the most common causes of FEVR. METHODS: A loss of function mutation resulting from a 10-nucleotide insertion into exon 1 of the zebrafish fzd4 gene was generated using transcription activator-like effector nucleases (TALENs). Structural and functional integrity of the retinal vasculature was examined by fluorescent microscopy and optokinetic responses. RESULTS: Zebrafish retinal vasculature is asymmetrically distributed along the dorsoventral axis, with active vascular remodeling on the ventral surface of the retina throughout development. fzd4 mutants exhibit disorganized ventral retinal vasculature with discernable tubular fusion by week 8 of development. Furthermore, fzd4 mutants have impaired optokinetic responses requiring increased illumination. CONCLUSION: We have generated a visually impaired zebrafish FEVR model exhibiting abnormal retinal vasculature. These fish provide a tractable system for studying vascular biology in retinovascular disorders, and demonstrate the feasibility of using zebrafish for evaluating future FEVR genes identified in humans.


Asunto(s)
Receptores Frizzled/fisiología , Retina/patología , Vasos Retinianos/patología , Remodelación Vascular/genética , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Modelos Animales de Enfermedad , Embrión no Mamífero , Vitreorretinopatías Exudativas Familiares/diagnóstico , Vitreorretinopatías Exudativas Familiares/genética , Vitreorretinopatías Exudativas Familiares/patología , Estudios de Factibilidad , Receptores Frizzled/genética , Humanos , Neovascularización Patológica/embriología , Neovascularización Patológica/genética , Neovascularización Patológica/fisiopatología , Retina/diagnóstico por imagen , Retina/embriología , Retina/metabolismo , Enfermedades de la Retina/genética , Enfermedades de la Retina/patología , Vasos Retinianos/embriología , Vasos Retinianos/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
2.
Zebrafish ; 16(2): 207-213, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30694734

RESUMEN

Zebrafish (Danio rerio) adults are viewed as sexually dimorphic. However, current approaches to sex discrimination rely mainly on subjective assessment of color patterns and body structures. Here, we explore how geometric morphometrics allow for quantitative sex discrimination based on overall body geometry of adult zebrafish (aged 12-24 months). Ten homologous landmarks were placed on the left lateral view of adult zebrafish and transformed through Procrustes superimposition before being analyzed with canonical variate analysis. We compared two models to distinguish between sexes. The first model consisted of landmarks that included the abdominal region and the second model did not. Males and females clearly diverged along a single canonical variate, and jackknife testing reinforced the strength of the sorting algorithm with 100% correct assignment of sex for both models. Analysis of body geometry demonstrated that males have a longer caudal peduncle, a more streamlined ventral region, and slightly more inferior placement of eyes than females. Based on these results we developed a logistic regression equation using the ratio of ventral caudal peduncle length to standard length to provide researchers a reliable and objective method for sex discrimination in zebrafish.


Asunto(s)
Tamaño Corporal , Ciencia de los Animales de Laboratorio/métodos , Caracteres Sexuales , Análisis para Determinación del Sexo/métodos , Pez Cebra/anatomía & histología , Animales , Femenino , Masculino
3.
PLoS One ; 13(12): e0209115, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30566504

RESUMEN

Picocyanobacteria are the numerically dominant photoautotrophs of the oligotrophic regions of Earth's oceans. These organisms are characterized by their small size and highly reduced genomes. Strains partition to different light intensity and nutrient level niches, with differing photosynthetic apparatus stoichiometry, light harvesting machinery and susceptibility to photoinactivation. In this study, we grew three strains of picocyanobacteria: the low light, high nutrient strain Prochlorococcus marinus MIT 9313; the high light, low nutrient Prochlorococcus marinus MED 4; and the high light, high nutrient marine Synechococcus strain WH 8102; under low and high growth light levels. We then performed matched photophysiology, protein and transcript analyses. The strains differ significantly in their rates of Photosystem II repair under high light and in their capacity to remove the PsbA protein as the first step in the Photosystem II repair process. Notably, all strains remove the PsbD subunit at the same rate that they remove PsbA. When grown under low light, MIT 9313 loses active Photosystem II quickly when shifted to high light, but has no measurable capacity to remove PsbA. MED 4 and WH 8102 show less rapid loss of Photosystem II and considerable capacity to remove PsbA. MIT 9313 has less of the FtsH protease thought to be responsible for the removal of PsbA in other cyanobacteria. Furthermore, by transcript analysis the predominant FtsH isoform expressed in MIT 9313 is homologous to the FtsH 4 isoform characterized in the model strain Synechocystis PCC 6803, rather than the FtsH 2 and 3 isoforms thought to be responsible for PsbA degradation. MED 4 on the other hand shows high light inducible expression of the isoforms homologous to FtsH 2 and 3, consistent with its faster rate of PsbA removal. MIT 9313 has adapted to its low light environment by diverting resources away from Photosystem II content and repair.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Prochlorococcus/metabolismo , Synechococcus/metabolismo , Adaptación Biológica , Proteínas Bacterianas/genética , Biología Computacional , Expresión Génica , Luz , Oxígeno/metabolismo , Filogenia , Isoformas de Proteínas/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA