Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Med Sci Sports Exerc ; 55(10): 1750-1760, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37144634

RESUMEN

PURPOSE: Our purpose was to examine the effects of 2 yr of creatine monohydrate supplementation and exercise on bone health in postmenopausal women. METHODS: Two hundred and thirty-seven postmenopausal women (mean age, 59 yr) were randomized to receive creatine (0.14 g·kg -1 ·d -1 ) or placebo during a resistance training (3 d·wk -1 ) and walking (6 d·wk -1 ) program for 2 yr. Our primary outcome was the femoral neck bone mineral density (BMD), with lumbar spine BMD and proximal femur geometric properties as the secondary outcomes. RESULTS: Compared with placebo, creatine supplementation had no effect on BMD of the femoral neck (creatine: 0.725 ± 0.110 to 0.712 ± 0.100 g·cm -2 ; placebo: 0.721 ± 0.102 to 0.706 ± 0.097 g·cm -2 ), total hip (creatine: 0.879 ± 0.118 to 0.872 ± 0.114 g·cm -2 ; placebo: 0.881 ± 0.111 to 0.873 ± 0.109 g·cm -2 ), or lumbar spine (creatine: 0.932 ± 0.133 to 0.925 ± 0.131 g·cm -2 ; placebo: 0.923 ± 0.145 to 0.915 ± 0.143 g·cm -2 ). Creatine significantly maintained section modulus (1.35 ± 0.29 to 1.34 ± 0.26 vs 1.34 ± 0.25 to 1.28 ± 0.23 cm 3 (placebo), P = 0.0011), predictive of bone bending strength, and buckling ratio (10.8 ± 2.6 to 11.1 ± 2.2 vs 11.0 ± 2.6 to 11.6 ± 2.7 (placebo), P = 0.011), predictive of reduced cortical bending under compressive loads, at the narrow part of the femoral neck. Creatine reduced walking time over 80 m (48.6 ± 5.6 to 47.1 ± 5.4 vs 48.3 ± 4.5 to 48.2 ± 4.9 s (placebo), P = 0.0008) but had no effect on muscular strength (i.e., one-repetition maximum) during bench press (32.1 ± 12.7 to 42.6 ± 14.1 vs 30.6 ± 10.9 to 41.4 ± 14 kg (placebo)) and hack squat (57.6 ± 21.6 to 84.4 ± 28.1 vs 56.6 ± 24.0 to 82.7 ± 25.0 kg (placebo)). In the subanalysis of valid completers, creatine increased lean tissue mass compared with placebo (40.8 ± 5.7 to 43.1 ± 5.9 vs 40.4 ± 5.3 to 42.0 ± 5.2 kg (placebo), P = 0.046). CONCLUSIONS: Two years of creatine supplementation and exercise in postmenopausal women had no effect on BMD; yet, it improved some bone geometric properties at the proximal femur.


Asunto(s)
Densidad Ósea , Osteoporosis Posmenopáusica , Femenino , Humanos , Persona de Mediana Edad , Creatina , Posmenopausia , Osteoporosis Posmenopáusica/complicaciones , Osteoporosis Posmenopáusica/tratamiento farmacológico , Cuello Femoral , Suplementos Dietéticos , Método Doble Ciego
2.
Int J MS Care ; 20(2): 92-100, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670495

RESUMEN

BACKGROUND: Pilates is a series of exercises based on whole-body movement and may improve mobility in people with multiple sclerosis (MS). The purpose of this study was to determine the effect of Pilates on walking performance in people with MS. METHODS: 30 individuals with MS who were not restricted to a wheelchair or scooter (Patient-Determined Disease Steps scale score <7) were randomized to receive Pilates (twice weekly) and massage therapy (once weekly) or once-weekly massage therapy only (control group). The Pilates was delivered in a group setting (five to ten participants per session). The primary outcome was change in walking performance (6-Minute Walk Test) after 12 weeks. Secondary outcomes included functional ability (Timed Up and Go test), balance (Fullerton Advanced Balance Scale), flexibility (sit and reach test), body composition (dual-energy X-ray absorptiometry), core endurance (plank-hold test), and muscle strength and voluntary activation (quadriceps). Intention-to-treat analysis was performed using a two-factor repeated-measures analysis of variance. RESULTS: Walking distance increased by a mean (SD) of 52.4 (40.2) m in the Pilates group versus 15.0 (34.1) m in the control group (group × time, P = .01). Mean (SD) time to complete the Timed Up and Go test decreased by 1.5 (2.8) seconds in the Pilates group versus an increase of 0.3 (0.9) seconds in the control group (group × time, P = .03). There were no other significant differences between groups over time. CONCLUSIONS: Pilates improved walking performance and functional ability in persons with MS and is a viable exercise option to help manage the disease.

3.
Med Sci Sports Exerc ; 49(4): 633-640, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27875501

RESUMEN

INTRODUCTION/PURPOSE: Resistance training with ibuprofen supplementation may improve musculoskeletal health in postmenopausal women. The study purpose was to determine the efficacy of resistance training and ibuprofen supplementation on bone and muscle properties in postmenopausal women. METHODS: Participants (n = 90, 65.3 ± 4.9 yr) were randomly assigned to: supervised resistance training or stretching (placebo-exercise) with postexercise ibuprofen (400 mg) or placebo supplementation for 3 d·wk (9 months). Baseline and postintervention measurements included distal and shaft scans of the forearm and lower leg using peripheral quantitative computed tomography. Distal site outcomes included cross-sectional area, content, and density for total and trabecular bone, as well as estimated bone strength in compression. Shaft site outcomes included total bone area; cortical bone area, content, and density; estimated bone strength in torsion; and muscle area and density. RESULTS: Exercise-supplement-time interactions for total bone content at the distal radius (P = 0.009) and cortical density at the radius shaft (P = 0.038) were significant. Resistance training with ibuprofen decreased total bone content (-1.5%) at the distal radius in comparison to the resistance training (0.6%; P = 0.032) and ibuprofen alone (0.5%; P = 0.050). Change in cortical density at the radius shaft differed between the stretching with placebo and ibuprofen supplementation groups (-1.8% vs 1.1%; P = 0.050). Resistance training preserved muscle density in the lower leg more so than stretching (-3.1% vs -5.4%; P = 0.015). CONCLUSIONS: Ibuprofen consumed immediately after resistance training had a deleterious effect on bone mineral content at the distal radius, whereas resistance training or ibuprofen supplementation individually prevented bone loss. Resistance training prevented muscle density decline in the lower leg.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Densidad Ósea/efectos de los fármacos , Ibuprofeno/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Posmenopausia , Entrenamiento de Fuerza , Absorciometría de Fotón , Anciano , Dieta , Femenino , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/efectos de los fármacos , Persona de Mediana Edad , Fuerza Muscular/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/diagnóstico por imagen , Radio (Anatomía)/diagnóstico por imagen , Radio (Anatomía)/efectos de los fármacos , Tomografía Computarizada por Rayos X
4.
Bone Rep ; 5: 96-103, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28326351

RESUMEN

PURPOSE: To compare the effects of nine months of exercise training and ibuprofen supplementation (given immeditately after exercise sessions) on bone and muscle in postmenopausal women. METHODS: In a double-blind randomized trial, participants (females: n = 90, mean age 64.8, SD 4.3 years) were assigned (computer generated, double blind) to receive supervised resistance training or stretching 3 days/week, and ibuprofen (400 mg, post-exercise) or placebo (i.e. 4 groups) for 9 months. In this proof-of-concept study the sample size was halved from required 200 identified via 90% power calculation. Baseline and post-intervention testing included: Dual energy x-ray absorptiometry (DXA) for lumbar spine, femoral neck, and total body areal bone mineral density (aBMD); geometry of proximal femur; total body lean tissue and fat mass; predicted 1-repetition maximum muscle strength testing (1RM; biceps curl, hack squat). RESULTS: Exercise training or ibuprofen supplementation had no effects on aBMD of the lumbar spine, femoral neck, and total body. There was a significant exercise × supplement × time interaction for aBMD of Ward's region of the femoral neck (p = 0.015) with post hoc comparison showing a 6% decrease for stretching with placebo vs. a 3% increase for stretching with ibuprofen (p = 0.017). Resistance training increased biceps curl and hack squat strength vs. stretching (22% vs. 4% and 114% vs. 12%, respectively) (p < 0.01) and decreased percent body fat compared to stretching (2% vs. 0%) (p < 0.05). CONCLUSIONS: Ibuprofen supplementation provided some benefits to bone when taken independent of exercise training in postmenopausal women. This study provides evidence towards a novel, easily accessible stimulus for enhancing bone health [i.e. ibuprofen].

5.
Int J Sport Nutr Exerc Metab ; 24(3): 276-85, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24281841

RESUMEN

Bovine colostrum is the first milk secreted by cows after parturition and has high levels of protein, immunoglobulins, and various growth factors. We determined the effects of 8 weeks of bovine colostrum supplementation versus whey protein during resistance training in older adults. Males (N = 15, 59.1 ± 5.4 y) and females (N = 25, 59.0 ± 6.7 y) randomly received (double-blind) 60 g/d of colostrum or whey protein complex (containing 38 g protein) while participating in a resistance training program (12 exercises, 3 sets of 8-12 reps, 3 days/ week). Strength (bench press and leg press 1-RM), body composition (by dual energy x-ray absorptiometry), muscle thickness of the biceps and quadriceps (by ultrasound), cognitive function (by questionnaire), plasma insulin-like growth factor-1 (IGF-1) and C-reactive protein (CRP, as a marker of inflammation), and urinary N-telopeptides (Ntx, a marker of bone resorption) were determined before and after the intervention. Participants on colostrum increased leg press strength (24 ± 29 kg; p < .01) to a greater extent than participants on whey protein (8 ± 16 kg) and had a greater reduction in Ntx compared with participants on whey protein (-15 ± 40% vs. 10 ± 42%; p < .05). Bench press strength, muscle thickness, lean tissue mass, bone mineral content, and cognitive scores increased over time (p < .05) with no difference between groups. There were no changes in IGF-1 or CRP. Colostrum supplementation during resistance training was beneficial for increasing leg press strength and reducing bone resorption in older adults. Both colostrum and whey protein groups improved upper body strength, muscle thickness, lean tissue mass, and cognitive function.


Asunto(s)
Resorción Ósea/prevención & control , Cognición/efectos de los fármacos , Calostro , Suplementos Dietéticos , Proteínas de la Leche/farmacología , Músculo Esquelético/efectos de los fármacos , Entrenamiento de Fuerza , Animales , Compartimentos de Líquidos Corporales/efectos de los fármacos , Densidad Ósea/efectos de los fármacos , Resorción Ósea/metabolismo , Bovinos , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de la Leche/uso terapéutico , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Péptidos/orina , Proteína de Suero de Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA