Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 18(12): 1401-1408, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37653051

RESUMEN

Patterning antidots, which are regions of potential hills that repel electrons, into well-defined antidot lattices creates fascinating artificial periodic structures, leading to anomalous transport properties and exotic quantum phenomena in two-dimensional systems. Although nanolithography has brought conventional antidots from the semiclassical regime to the quantum regime, achieving precise control over the size of each antidot and its spatial period at the atomic scale has remained challenging. However, attaining such control opens the door to a new paradigm, enabling the creation of quantum antidots with discrete quantum hole states, which, in turn, offer a fertile platform to explore novel quantum phenomena and hot electron dynamics in previously inaccessible regimes. Here we report an atomically precise bottom-up fabrication of a series of atomic-scale quantum antidots through a thermal-induced assembly of a chalcogenide single vacancy in PtTe2. Such quantum antidots consist of highly ordered single-vacancy lattices, spaced by a single Te atom, reaching the ultimate downscaling limit of antidot lattices. Increasing the number of single vacancies in quantum antidots strengthens the cumulative repulsive potential and consequently enhances the collective interference of multiple-pocket scattered quasiparticles inside quantum antidots, creating multilevel quantum hole states with a tunable gap from the telecom to far-infrared regime. Moreover, precisely engineered quantum hole states of quantum antidots are geometry protected and thus survive on oxygen substitutional doping. Therefore, single-vacancy-assembled quantum antidots exhibit unprecedented robustness and property tunability, positioning them as highly promising candidates for advancing quantum information and photocatalysis technologies.

2.
Nano Lett ; 22(21): 8422-8429, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36214509

RESUMEN

The ability to create a robust and well-defined artificial atomic charge in graphene and understand its carrier-dependent electronic properties represents an important goal toward the development of graphene-based quantum devices. Herein, we devise a new pathway toward the atomically precise embodiment of point charges into a graphene lattice by posterior (N) ion implantation into a back-gated graphene device. The N dopant behaves as an in-plane proton-like charge manifested by formation of the characteristic resonance state in the conduction band. Scanning tunneling spectroscopy measurements at varied charge carrier densities reveal a giant energetic renormalization of the resonance state up to 220 meV with respect to the Dirac point, accompanied by the observation of gate-tunable long-range screening effects close to individual N dopants. Joint density functional theory and tight-binding calculations with modified perturbation potential corroborate experimental findings and highlight the short-range character of N-induced perturbation.

3.
Phys Rev Lett ; 128(17): 176801, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35570438

RESUMEN

We report that monoelemental black phosphorus presents a new electronic self-passivation scheme of single vacancy (SV). By means of low-temperature scanning tunneling microscopy and noncontact atomic force microscopy, we demonstrate that the local reconstruction and ionization of SV into negatively charged SV^{-} leads to the passivation of dangling bonds and, thus, the quenching of in-gap states, which can be achieved by mild thermal annealing or STM tip manipulation. SV exhibits a strong and symmetric Friedel oscillation (FO) pattern, while SV^{-} shows an asymmetric FO pattern with local perturbation amplitude reduced by one order of magnitude and a faster decay rate. The enhanced passivation by forming SV^{-} can be attributed to its weak dipolelike perturbation, consistent with density-functional theory numerical calculations. Therefore, self-passivated SV^{-} is electrically benign and acts as a much weaker scattering center, which may hold the key to further enhance the charge mobility of black phosphorus and its analogs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA