RESUMEN
Semaphorin6A (Sema6A) is a repulsive guidance molecule that plays many roles in central nervous system, heart and bone development, as well as immune system responses and cell signaling in cancer. Loss of Sema6A or its receptor PlexinA2 in zebrafish leads to smaller eyes and improper retinal patterning. Here, we investigate a potential role for the Sema6A intracellular domain in zebrafish eye development and dissect which phenotypes rely on forward signaling and which rely on reverse signaling. We performed rescue experiments on zebrafish Sema6A morphants with either full-length Sema6A (Sema6A-FL) or Sema6A lacking its intracellular domain (Sema6A-ΔC). We identified that the intracellular domain is not required for eye size and retinal patterning, however it is required for retinal integrity, the number and end feet strength of Müller glia and protecting against retinal cell death. This novel function for the intracellular domain suggests a role for Sema6A reverse signaling in zebrafish eye development.
Asunto(s)
Dominios Proteicos , Retina , Semaforinas , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/metabolismo , Pez Cebra/embriología , Semaforinas/metabolismo , Semaforinas/genética , Retina/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Transducción de Señal , Células Ependimogliales/metabolismo , Células Ependimogliales/citologíaRESUMEN
The evolution of SARS-CoV-2 variants and their respective phenotypes represents an important set of tools to understand basic coronavirus biology as well as the public health implications of individual mutations in variants of concern. While mutations outside of Spike are not well studied, the entire viral genome is undergoing evolutionary selection, particularly the central disordered linker region of the nucleocapsid (N) protein. Here, we identify a mutation (G215C), characteristic of the Delta variant, that introduces a novel cysteine into this linker domain, which results in the formation of a disulfide bond and a stable N-N dimer. Using reverse genetics, we determined that this cysteine residue is necessary and sufficient for stable dimer formation in a WA1 SARS-CoV-2 background, where it results in significantly increased viral growth both in vitro and in vivo. Finally, we demonstrate that the N:G215C virus packages more nucleocapsid per virion and that individual virions are larger, with elongated morphologies.
RESUMEN
CRK adaptor proteins are important for signal transduction mechanisms driving cell proliferation and positioning during vertebrate central nervous system development. Zebrafish lacking both CRK family members exhibit small, disorganized retinas with 50% penetrance. The goal of this study was to determine whether another adaptor protein might functionally compensate for the loss of CRK adaptors. Expression patterns in developing zebrafish, and bioinformatic analyses of the motifs recognized by their SH2 and SH3 domains, suggest NCK adaptors are well-positioned to compensate for loss of CRK adaptors. In support of this hypothesis, proteomic analyses found CRK and NCK adaptors share overlapping interacting partners including known regulators of cell adhesion and migration, suggesting their functional intersection in neurodevelopment.
Asunto(s)
Proteómica , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal/fisiología , Dominios Homologos srcRESUMEN
Semaphorins (Semas) are a family of secreted and transmembrane proteins that play critical roles in development. Interestingly, several vertebrate transmembrane Sema classes are capable of producing functional soluble ectodomains. However, little is known of soluble Sema6 ectodomains in the nervous system. Herein, we show that the soluble Sema6A ectodomain, sSema6A, exhibits natural and protein kinase C (PKC)-induced release. We show that PKC mediates Sema6A phosphorylation at specific sites and while this phosphorylation is not the primary mechanism regulating sSema6A production, we found that the intracellular domain confers resistance to ectodomain release. Finally, sSema6A is functional as it promotes the cohesion of zebrafish early eye field explants. This suggests that in addition to its canonical contact-mediated functions, Sema6A may have regulated, long-range, forward-signaling capacity.