Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Endocrinology ; 164(6)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37183548

RESUMEN

The pituitary gland regulates growth, metabolism, reproduction, the stress response, uterine contractions, lactation, and water retention. It secretes hormones in response to hypothalamic input, end organ feedback, and diurnal cues. The mechanisms by which pituitary stem cells are recruited to proliferate, maintain quiescence, or differentiate into specific cell types, especially thyrotropes, are not well understood. We used single-cell RNA sequencing in juvenile P7 mouse pituitary cells to identify novel factors in pituitary cell populations, with a focus on thyrotropes and rare subtypes. We first observed cells coexpressing markers of both thyrotropes and gonadotropes, such as Pou1f1 and Nr5a1. This was validated in vivo by both immunohistochemistry and lineage tracing of thyrotropes derived from Nr5a1-Cre; mTmG mice and demonstrates that Nr5a1-progenitors give rise to a proportion of thyrotropes during development. Our data set also identifies novel factors expressed in pars distalis and pars tuberalis thyrotropes, including the Shox2b isoform in all thyrotropes and Sox14 specifically in Pou1f1-negative pars tuberalis thyrotropes. We have therefore used single-cell transcriptomics to determine a novel developmental trajectory for thyrotropes and potential novel regulators of thyrotrope populations.


Asunto(s)
Enfermedades de la Hipófisis , Adenohipófisis , Embarazo , Femenino , Ratones , Animales , Tirotropina/metabolismo , Hipófisis/metabolismo , Factores de Transcripción/metabolismo , Enfermedades de la Hipófisis/metabolismo , Inmunohistoquímica , Adenohipófisis/metabolismo , Factores de Transcripción SOXB2/metabolismo
2.
Nat Commun ; 13(1): 7858, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543805

RESUMEN

SUMOylation is a dynamic posttranslational modification, that provides fine-tuning of protein function involved in the cellular response to stress, differentiation, and tissue development. In the adrenal cortex, an emblematic endocrine organ that mediates adaptation to physiological demands, the SUMOylation gradient is inversely correlated with the gradient of cellular differentiation raising important questions about its role in functional zonation and the response to stress. Considering that SUMO-specific protease 2 (SENP2), a deSUMOylating enzyme, is upregulated by Adrenocorticotropic Hormone (ACTH)/cAMP-dependent Protein Kinase (PKA) signalling within the zona fasciculata, we generated mice with adrenal-specific Senp2 loss to address these questions. Disruption of SENP2 activity in steroidogenic cells leads to specific hypoplasia of the zona fasciculata, a blunted reponse to ACTH and isolated glucocorticoid deficiency. Mechanistically, overSUMOylation resulting from SENP2 loss shifts the balance between ACTH/PKA and WNT/ß-catenin signalling leading to repression of PKA activity and ectopic activation of ß-catenin. At the cellular level, this blocks transdifferentiation of ß-catenin-positive zona glomerulosa cells into fasciculata cells and sensitises them to premature apoptosis. Our findings indicate that the SUMO pathway is critical for adrenal homeostasis and stress responsiveness.


Asunto(s)
Transdiferenciación Celular , Cisteína Endopeptidasas , Glucocorticoides , Animales , Ratones , Corteza Suprarrenal/metabolismo , Corticoesteroides/metabolismo , Hormona Adrenocorticotrópica/metabolismo , beta Catenina/metabolismo , Transdiferenciación Celular/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Glucocorticoides/metabolismo , Vía de Señalización Wnt
3.
J Neuroendocrinol ; 34(4): e13125, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35365898

RESUMEN

Excess glucocorticoid exposure affects emotional and cognitive brain functions. The extreme form, Cushing's syndrome, is adequately modelled in the AdKO2.0 mouse, consequential to adrenocortical hypertrophy and hypercorticosteronemia. We previously reported that the AdKO2.0 mouse brain undergoes volumetric changes that resemble closely those of Cushing's syndrome human patients, as well as changes in expression of glial related marker proteins. In the present work, the expression of genes related to glial and neuronal cell populations and functions was assessed in regions of the anterior brain, hippocampus, amygdala and hypothalamus. Glucocorticoid target genes were consistently regulated, including CRH mRNA suppression in the hypothalamus and induction in amygdala and hippocampus, even if glucocorticoid receptor protein was downregulated. Expression of glial genes was also affected in the AdKO2.0 mouse brain, indicating a different activation status in glial cells. Generic markers for neuronal cell populations, and cellular integrity were only slightly affected. Our findings highlight the vulnerability of glial cell populations to chronic high levels of circulating glucocorticoids.


Asunto(s)
Síndrome de Cushing , Animales , Encéfalo/metabolismo , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Expresión Génica , Glucocorticoides/metabolismo , Humanos , Ratones , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
4.
J Clin Invest ; 132(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166237

RESUMEN

Osteocalcin is a hormone produced in bones by osteoblasts during bone formation. Numerous studies have demonstrated that adrenal gland-derived glucocorticoids inhibit osteocalcin production, which can ultimately cause deleterious bones loss. This loss establishes a unidirectional endocrine relationship between the adrenal glands and bone, however, whether osteocalcin reciprocally regulates glucocorticoid secretion remains unclear. In this issue of the JCI, Yadav and colleagues address how bone-derived osteocalcin influences adrenal organogenesis and function. Using a large variety of animal models, the authors established that embryonic osteocalcin signaling, specifically through the GPR158 receptor, regulates postnatal adrenal steroid concentrations throughout life. This work has translational potential, and we await future investigations that determine whether modulating osteocalcin levels could promote endogenous adrenocortical function in adrenocortical hypoplasia and glucocorticoid deficiency.


Asunto(s)
Huesos , Osteoblastos , Animales , Glucocorticoides/farmacología , Osteocalcina/genética , Osteogénesis/efectos de los fármacos
5.
Front Neurosci ; 15: 604103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642975

RESUMEN

Chronic exposure to high circulating levels of glucocorticoids has detrimental effects on health, including metabolic abnormalities, as exemplified in Cushing's syndrome (CS). Magnetic resonance imaging (MRI) studies have found volumetric changes in gray and white matter of the brain in CS patients during the course of active disease, but also in remission. In order to explore this further, we performed MRI-based brain volumetric analyses in the AdKO mouse model for CS, which presents its key traits. AdKO mice had reduced relative volumes in several brain regions, including the corpus callosum and cortical areas. The medial amygdala, bed nucleus of the stria terminalis, and hypothalamus were increased in relative volume. Furthermore, we found a lower immunoreactivity of myelin basic protein (MBP, an oligodendrocyte marker) in several brain regions but a paradoxically increased MBP signal in the male cingulate cortex. We also observed a decrease in the expression of glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes) and ionized calcium-binding adapter molecule 1 (IBA1, a marker for activated microglia) in the cingulate regions of the anterior corpus callosum and the hippocampus. We conclude that long-term hypercorticosteronemia induced brain region-specific changes that might include aberrant myelination and a degree of white matter damage, as both repair (GFAP) and immune (IBA1) responses are decreased. These findings suggest a cause for the changes observed in the brains of human patients and serve as a background for further exploration of their subcellular and molecular mechanisms.

6.
Mol Cell Endocrinol ; 528: 111239, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33676986

RESUMEN

In humans, reticularis cells of the adrenal cortex fuel the production of androgen steroids, constituting the driver of numerous morphological changes during childhood. These steps are considered a precocious stage of sexual maturation and are grouped under the term "adrenarche". This review describes the molecular and enzymatic characteristics of the zona reticularis, along with the possible signals and mechanisms that control its emergence and the associated clinical features. We investigate the differences between species and discuss new studies such as genetic lineage tracing and transcriptomic analysis, highlighting the rodent inner cortex's cellular and molecular heterogeneity. The recent development and characterization of mouse models deficient for Prkar1a presenting with adrenocortical reticularis-like features prompt us to review our vision of the mouse adrenal gland maturation. We expect these new insights will help increase our understanding of the adrenarche process and the pathologies associated with its deregulation.


Asunto(s)
Adrenarquia/metabolismo , Andrógenos/metabolismo , Zona Reticular/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Ratas
7.
Mol Cell Endocrinol ; 522: 111120, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33338548

RESUMEN

The Wnt signaling pathway is a critical mediator of the development and maintenance of several tissues. The adrenal cortex is highly dependent upon Wnt/ß-catenin signaling for proper zonation and endocrine function. Adrenocortical cells emerge in the peripheral capsule and subcapsular cortex of the gland as progenitor cells that centripetally differentiate into steroid hormone-producing cells of three functionally distinct concentric zones that respond robustly to various endocrine stimuli. Wnt/ß-catenin signaling mediates adrenocortical progenitor cell fate and tissue renewal to maintain the gland throughout life. Aberrant Wnt/ß-catenin signaling contributes to various adrenal disorders of steroid production and growth that range from hypofunction and hypoplasia to hyperfunction, hyperplasia, benign adrenocortical adenomas, and malignant adrenocortical carcinomas. Great strides have been made in defining the molecular underpinnings of adrenocortical homeostasis and disease, including the interplay between the capsule and cortex, critical components involved in maintaining the adrenocortical Wnt/ß-catenin signaling gradient, and new targets in adrenal cancer. This review seeks to examine these and other recent advancements in understanding adrenocortical Wnt/ß-catenin signaling and how this knowledge can inform therapeutic options for adrenal disease.


Asunto(s)
Corteza Suprarrenal/metabolismo , Corteza Suprarrenal/patología , Enfermedades de las Glándulas Suprarrenales/metabolismo , Enfermedades de las Glándulas Suprarrenales/patología , beta Catenina/metabolismo , Animales , Humanos , Ligandos , Regeneración , Vía de Señalización Wnt
8.
FASEB J ; 33(9): 10218-10230, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31208233

RESUMEN

SUMOylation is a highly conserved and dynamic post-translational mechanism primarily affecting nuclear programs for adapting organisms to stressful challenges. Alteration of SUMOylation cycles leads to severe developmental and homeostatic defects and malignancy, but signals coordinating SUMOylation are still unidentified. The adrenal cortex is a zonated endocrine gland that controls body homeostasis and stress response. Here, we show that in human and in mouse adrenals, SUMOylation follows a decreasing centripetal gradient that mirrors cortical differentiation flow and delimits highly and weakly SUMOylated steroidogenic compartments, overlapping glomerulosa, and fasciculata zones. Activation of PKA signaling by acute hormonal treatment, mouse genetic engineering, or in Carney complex results in repression of small ubiquitin-like modifier (SUMO) conjugation in the inner cortex by coordinating expression of SUMO pathway inducers and repressors. Conversely, genetic activation of canonical wingless-related integration site signaling maintains high SUMOylation potential in the outer neoplastic cortex. Thus, SUMOylation is tightly regulated by signaling pathways that orchestrate adrenal zonation and diseases.-Dumontet, T., Sahut-Barnola, I., Dufour, D., Lefrançois-Martinez, A.-M., Berthon, A., Montanier, N., Ragazzon, B., Djari, C., Pointud, J.-C., Roucher-Boulez, F., Batisse-Lignier, M., Tauveron, I., Bertherat, J., Val, P., Martinez, A. Hormonal and spatial control of SUMOylation in the human and mouse adrenal cortex.


Asunto(s)
Corteza Suprarrenal/metabolismo , Hormona Adrenocorticotrópica/farmacología , Procesamiento Proteico-Postraduccional/fisiología , Sumoilación/fisiología , Corteza Suprarrenal/efectos de los fármacos , Corteza Suprarrenal/ultraestructura , Neoplasias de la Corteza Suprarrenal/patología , Hormona Adrenocorticotrópica/administración & dosificación , Animales , Complejo de Carney/metabolismo , Línea Celular Tumoral , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Cicloheximida/farmacología , Dactinomicina/farmacología , Preparaciones de Acción Retardada , Dexametasona/análogos & derivados , Dexametasona/farmacología , Femenino , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sumoilación/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/fisiología , Zona Fascicular/efectos de los fármacos , Zona Fascicular/metabolismo , Zona Glomerular/efectos de los fármacos , Zona Glomerular/metabolismo , beta Catenina/deficiencia , beta Catenina/genética
9.
Proc Natl Acad Sci U S A ; 115(52): E12265-E12274, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30541888

RESUMEN

Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.


Asunto(s)
Corteza Suprarrenal/enzimología , Subunidad RIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Transducción de Señal , Corteza Suprarrenal/metabolismo , Animales , Diferenciación Celular , Subunidad RIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 7/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 7/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Esteroides/metabolismo , Zona Fascicular/citología , Zona Fascicular/enzimología , Zona Fascicular/metabolismo , Zona Glomerular/citología , Zona Glomerular/enzimología , Zona Glomerular/metabolismo
10.
Ann Endocrinol (Paris) ; 79(3): 95-97, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29673697

RESUMEN

The adrenocortical gland undergoes structural and functional remodelling in the fetal and postnatal periods. After birth, the fetal zone of the gland undergoes rapid involution in favor of the definitive cortex, which reaches maturity with the emergence of the zona reticularis(zR) at the adrenarche. The mechanisms underlying the adrenarche, the process leading to pre-puberty elevation of plasma androgens in higher primates, remain unknown, largely due to lack of any experimental model. By following up fetal and definitive cortex cell lines in mice, we showed that activation of protein kinase A (PKA) signaling mainly impacts the adult cortex by stimulating centripetal regeneration, with differentiation and then conversion of the zona fasciculata into a functional zR. Animals developed Cushing syndrome associated with primary hyperaldosteronism, suggesting possible coexistence of these hypersecretions in certain patients. Remarkably, all of these traits were sex-dependent: testicular androgens promoted WNT signaling antagonism on PKA, slowing cortical renewal and delaying onset of Cushing syndrome and the establishment of the zR in male mice, this being corrected by orchidectomy. In conclusion, zR derives from centripetal conversion of the zona fasciculata under cellular renewal induced by PKA signaling, determining the size of the adult cortex. Finally, we demonstrated that this PKA-dependent mobilization of cortical progenitors is sexually dimorphic and could, if confirmed in humans, account for female preponderance in adrenocortical pathologies.


Asunto(s)
Corteza Suprarrenal/embriología , Corteza Suprarrenal/crecimiento & desarrollo , Ratones , Modelos Animales , Glándulas Suprarrenales/embriología , Glándulas Suprarrenales/crecimiento & desarrollo , Animales , Diferenciación Celular , Femenino , Humanos , Masculino , Ratones Noqueados , Maduración Sexual/fisiología
11.
JCI Insight ; 3(2)2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29367455

RESUMEN

The adrenal cortex undergoes remodeling during fetal and postnatal life. How zona reticularis emerges in the postnatal gland to support adrenarche, a process whereby higher primates increase prepubertal androgen secretion, is unknown. Using cell-fate mapping and gene deletion studies in mice, we show that activation of PKA has no effect on the fetal cortex, while it accelerates regeneration of the adult cortex, triggers zona fasciculata differentiation that is subsequently converted into a functional reticularis-like zone, and drives hypersecretion syndromes. Remarkably, PKA effects are influenced by sex. Indeed, testicular androgens increase WNT signaling that antagonizes PKA, leading to slower adrenocortical cell turnover and delayed phenotype whereas gonadectomy sensitizes males to hypercorticism and reticularis-like formation. Thus, reticularis results from ultimate centripetal conversion of adult cortex under the combined effects of PKA and cell turnover that dictate organ size. We show that PKA-induced progenitor recruitment is sexually dimorphic and may provide a paradigm for overrepresentation of women in adrenal diseases.


Asunto(s)
Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Caracteres Sexuales , Transducción de Señal/fisiología , Zona Fascicular/metabolismo , Zona Reticular/metabolismo , Adrenarquia/metabolismo , Factores de Edad , Andrógenos/metabolismo , Animales , Diferenciación Celular/fisiología , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Embrión de Mamíferos , Femenino , Masculino , Ratones , Ratones Noqueados , Modelos Animales
12.
Nat Commun ; 7: 12751, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27624192

RESUMEN

Adrenal cortex physiology relies on functional zonation, essential for production of aldosterone by outer zona glomerulosa (ZG) and glucocorticoids by inner zona fasciculata (ZF). The cortex undergoes constant cell renewal, involving recruitment of subcapsular progenitors to ZG fate and subsequent lineage conversion to ZF identity. Here we show that WNT4 is an important driver of WNT pathway activation and subsequent ZG differentiation and demonstrate that PKA activation prevents ZG differentiation through WNT4 repression and WNT pathway inhibition. This suggests that PKA activation in ZF is a key driver of WNT inhibition and lineage conversion. Furthermore, we provide evidence that constitutive PKA activation inhibits, whereas partial inactivation of PKA catalytic activity stimulates ß-catenin-induced tumorigenesis. Together, both lower PKA activity and higher WNT pathway activity lead to poorer prognosis in adrenocortical carcinoma (ACC) patients. These observations suggest that PKA acts as a tumour suppressor in the adrenal cortex, through repression of WNT signalling.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/etiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Vía de Señalización Wnt , Zona Fascicular/metabolismo , Zona Glomerular/metabolismo , Animales , Carcinogénesis , Diferenciación Celular , Línea Celular Tumoral , Femenino , Humanos , Ratones , Fosforilación , Zona Fascicular/citología , Zona Glomerular/citología , beta Catenina/metabolismo
13.
Genes Dev ; 30(12): 1389-94, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27313319

RESUMEN

Adrenal glands are zonated endocrine organs that are essential in controlling body homeostasis. How zonation is induced and maintained and how renewal of the adrenal cortex is ensured remain a mystery. Here we show that capsular RSPO3 signals to the underlying steroidogenic compartment to induce ß-catenin signaling and imprint glomerulosa cell fate. Deletion of RSPO3 leads to loss of SHH signaling and impaired organ growth. Importantly, Rspo3 function remains essential in adult life to ensure replenishment of lost cells and maintain the properties of the zona glomerulosa. Thus, the adrenal capsule acts as a central signaling center that ensures replacement of damaged cells and is required to maintain zonation throughout life.


Asunto(s)
Corteza Suprarrenal/fisiología , Diferenciación Celular/genética , Transducción de Señal/genética , Trombospondinas/metabolismo , Corteza Suprarrenal/citología , Animales , Proliferación Celular , Embrión de Mamíferos , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/genética , Homeostasis/genética , Masculino , Ratones , Trombospondinas/genética , Zona Glomerular/citología , Zona Glomerular/metabolismo , beta Catenina/metabolismo
14.
Hum Mol Genet ; 25(13): 2789-2800, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27149985

RESUMEN

Adrenal Cortex Carcinoma (ACC) is an aggressive tumour with poor prognosis. Common alterations in patients include constitutive WNT/ß-catenin signalling and overexpression of the growth factor IGF2. However, the combination of both alterations in transgenic mice is not sufficient to trigger malignant tumour progression, suggesting that other alterations are required to allow development of carcinomas. Here, we have conducted a study of publicly available gene expression data from three cohorts of ACC patients to identify relevant alterations. Our data show that the histone methyltransferase EZH2 is overexpressed in ACC in the three cohorts. This overexpression is the result of deregulated P53/RB/E2F pathway activity and is associated with increased proliferation and poorer prognosis in patients. Inhibition of EZH2 by RNA interference or pharmacological treatment with DZNep inhibits cellular growth, wound healing and clonogenic growth and induces apoptosis of H295R cells in culture. Further growth inhibition is obtained when DZNep is combined with mitotane, the gold-standard treatment for ACC. Altogether, these observations suggest that overexpression of EZH2 is associated with aggressive progression and may constitute an interesting therapeutic target in the context of ACC.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias de la Corteza Suprarrenal/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Bases de Datos de Ácidos Nucleicos , Progresión de la Enfermedad , Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Transgénicos , Interferencia de ARN , Factores de Riesgo , Vía de Señalización Wnt , beta Catenina/genética
15.
PLoS One ; 10(12): e0145400, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26689699

RESUMEN

BACKGROUND: LKB1 is an evolutionary conserved kinase implicated in a wide range of cellular functions including inhibition of cell proliferation, regulation of cell polarity and metabolism. When Lkb1 is inactivated in the liver, glucose homeostasis is perturbed, cellular polarity is affected and cholestasis develops. Cholestasis occurs as a result from deficient bile duct development, yet how LKB1 impacts on biliary morphogenesis is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the phenotype of mice in which deletion of the Lkb1 gene has been specifically targeted to the hepatoblasts. Our results confirmed that lack of LKB1 in the liver results in bile duct paucity leading to cholestasis. Immunostaining analysis at a prenatal stage showed that LKB1 is not required for differentiation of hepatoblasts to cholangiocyte precursors but promotes maturation of the primitive ductal structures to mature bile ducts. This phenotype is similar to that obtained upon inactivation of Notch signaling in the liver. We tested the hypothesis of a functional overlap between the LKB1 and Notch pathways by gene expression profiling of livers deficient in Lkb1 or in the Notch mediator RbpJκ and identified a mutual cross-talk between LKB1 and Notch signaling. In vitro experiments confirmed that Notch activity was deficient upon LKB1 loss. CONCLUSION: LKB1 and Notch share a common genetic program in the liver, and regulate bile duct morphogenesis.


Asunto(s)
Conductos Biliares/embriología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Notch/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Conductos Biliares/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colestasis/genética , Colestasis/patología , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Hígado/embriología , Ratones Transgénicos , Morfogénesis , Proteínas Serina-Treonina Quinasas/genética , Receptores Notch/genética
16.
Hum Mol Genet ; 23(20): 5418-28, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24865460

RESUMEN

Primary pigmented nodular adrenocortical disease (PPNAD) is associated with inactivating mutations of the PRKAR1A tumor suppressor gene that encodes the regulatory subunit R1α of the cAMP-dependent protein kinase (PKA). In human and mouse adrenocortical cells, these mutations lead to increased PKA activity, which results in increased resistance to apoptosis that contributes to the tumorigenic process. We used in vitro and in vivo models to investigate the possibility of a crosstalk between PKA and mammalian target of rapamycin (mTOR) pathways in adrenocortical cells and its possible involvement in apoptosis resistance. Impact of PKA signaling on activation of the mTOR pathway and apoptosis was measured in a mouse model of PPNAD (AdKO mice), in human and mouse adrenocortical cell lines in response to pharmacological inhibitors and in PPNAD tissues by immunohistochemistry. AdKO mice showed increased mTOR complex 1 (mTORC1) pathway activity. Inhibition of mTORC1 by rapamycin restored sensitivity of adrenocortical cells to apoptosis in AdKO but not in wild-type mice. In both cell lines and mouse adrenals, rapid phosphorylation of mTORC1 targets including BAD proapoptotic protein was observed in response to PKA activation. Accordingly, BAD hyperphosphorylation, which inhibits its proapoptotic activity, was increased in both AdKO mouse adrenals and human PPNAD tissues. In conclusion, mTORC1 pathway is activated by PKA signaling in human and mouse adrenocortical cells, leading to increased cell survival, which is correlated with BAD hyperphosphorylation. These alterations could be causative of tumor formation.


Asunto(s)
Enfermedades de la Corteza Suprarrenal/metabolismo , Enfermedades de la Corteza Suprarrenal/patología , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Proteína Letal Asociada a bcl/metabolismo , Enfermedades de la Corteza Suprarrenal/genética , Hormona Adrenocorticotrópica/administración & dosificación , Hormona Adrenocorticotrópica/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/metabolismo , Fosforilación , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA