Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 8(41): 27900-27910, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27662405

RESUMEN

Fully printed thin film transistors (TFT) based on poly(9,9-di-n-dodecylfluorene) (PFDD) wrapped semiconducting single walled carbon nanotube (SWCNT) channels are fabricated by a practical route that combines roll-to-roll (R2R) gravure and ink jet printing. SWCNT network density is easily controlled via ink formulation (concentration and polymer:CNT ratio) and jetting conditions (droplet size, drop spacing, and number of printed layers). Optimum inkjet printing conditions are established on Si/SiO2 in which an ink consisting of 6:1 PFDD:SWCNT ratio with 50 mg L-1 SWCNT concentration printed at a drop spacing of 20 µm results in TFTs with mobilities of ∼25 cm2 V-1 s-1 and on-/off-current ratios > 105. These conditions yield excellent network uniformity and are used in a fully additive process to fabricate fully printed TFTs on PET substrates with mobility values > 5 cm2 V-1 s-1 (R2R printed gate electrode and dielectric; inkjet printed channel and source/drain electrodes). An inkjet printed encapsulation layer completes the TFT process (fabricated in bottom gate, top contact TFT configuration) and provides mobilities > 1 cm2 V-1 s-1 with good operational stability, based on the performance of an inverter circuit. An array of 20 TFTs shows that most have less than 10% variability in terms of threshold voltage, transconductance, on-current, and subthreshold swing.

2.
Nanoscale ; 7(38): 15741-7, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26352590

RESUMEN

A novel purification process for the enrichment of sc-SWCNTs that combines selective conjugated polymer extraction (CPE) with selective adsorption using silica gel, termed hybrid-CPE (h-CPE), has been developed, providing a high purity sc-SWCNT material with a significant improvement in process efficiency and yield. Using the h-CPE protocol, a greater than 5 fold improvement in yield can be obtained compared to traditional CPE while obtaining sc-SWCNT with a purity >99.9% as assessed by absorption spectroscopy and Raman mapping. Thin film transistor devices using the h-CPE derived sc-SWCNTs as the semiconductor possess mobility values ranging from 10-30 cm(2) V(-1) s(-1) and current ON/OFF ratio of 10(4)-10(5) for channel lengths between 2.5 and 20 µm.

3.
Nanotechnology ; 19(2): 025202, 2008 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-21817536

RESUMEN

Charge transport across a disordered normal-superconductor (DN-S) interface was studied using a macroscopic, molecularly linked Au nanoparticle film as the DN component. Low-temperature conductance versus voltage and magnetic field exhibit zero-bias and zero-field peaks, respectively. Importantly, the latter typically exhibit superimposed oscillations. Such oscillations are rarely seen in other DN-S systems and are remarkable given their robustness in these macroscopic films and interfaces. A number of observations indicate that conductance peaks and oscillations arise due to a 'reflectionless tunnelling' process. Scattering length scales extracted from the data using a reflectionless tunnelling picture are consistent with literature values. Factors resulting in the observation of oscillations in this system are discussed.

4.
Nanotechnology ; 19(45): 455402, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21832776

RESUMEN

Interfaces between disordered normal materials and superconductors (S) can exhibit 'reflectionless tunnelling' (RT)-a phenomenon that arises from repeated disorder-driven elastic scattering, multiple Andreev reflections, and electron/hole interference. RT has been used to explain zero-bias conductance peaks (ZBCPs) observed using doped semiconductors and evaporated granular metal films as the disordered normal materials. Recently, in addition to ZBCPs, magnetoconductance oscillations predicted by RT theory have been observed using a novel normal disordered material: self-assembled nanoparticle films. In the present study, we find that the period of these oscillations decreases as temperature (T) increases. This suggests that the magnetic flux associated with interfering pathways increases accordingly. We propose that the increasing flux can be attributed to magnetic field penetration into S as [Formula: see text]. This model agrees remarkably well with known T dependence of penetration depth predicted by Bardeen-Cooper-Schrieffer theory. Our study shows that this additional region of flux is significant and must be considered in experimental and theoretical studies of RT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA