Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Glia ; 71(10): 2437-2455, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37417428

RESUMEN

Diverse subpopulations of astrocytes tile different brain regions to accommodate local requirements of neurons and associated neuronal circuits. Nevertheless, molecular mechanisms governing astrocyte diversity remain mostly unknown. We explored the role of a zinc finger transcription factor Yin Yang 1 (YY1) that is expressed in astrocytes. We found that specific deletion of YY1 from astrocytes causes severe motor deficits in mice, induces Bergmann gliosis, and results in simultaneous loss of GFAP expression in velate and fibrous cerebellar astrocytes. Single cell RNA-seq analysis showed that YY1 exerts specific effects on gene expression in subpopulations of cerebellar astrocytes. We found that although YY1 is dispensable for the initial stages of astrocyte development, it regulates subtype-specific gene expression during astrocyte maturation. Moreover, YY1 is continuously needed to maintain mature astrocytes in the adult cerebellum. Our findings suggest that YY1 plays critical roles regulating cerebellar astrocyte maturation during development and maintaining a mature phenotype of astrocytes in the adult cerebellum.


Asunto(s)
Astrocitos , Yin-Yang , Animales , Ratones , Astrocitos/metabolismo , Cerebelo/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo
2.
J Neurosci ; 36(16): 4506-21, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27098694

RESUMEN

The signaling pathways that regulate myelination in the PNS remain poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, activated in Schwann cells by neuregulin and the extracellular matrix, has an essential role in the early events of myelination. Akt/PKB, a key effector of phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, was previously implicated in CNS, but not PNS myelination. Here we demonstrate that Akt plays a crucial role in axon ensheathment and in the regulation of myelin sheath thickness in the PNS. Pharmacological inhibition of Akt in DRG neuron-Schwann cell cocultures dramatically decreased MBP and P0 levels and myelin sheath formation without affecting expression of Krox20/Egr2, a key transcriptional regulator of myelination. Conversely, expression of an activated form of Akt in purified Schwann cells increased expression of myelin proteins, but not Krox20/Egr2, and the levels of activated Rac1. Transgenic mice expressing a membrane-targeted, activated form of Akt under control of the 2',3'-cyclic nucleotide 3'-phosphodiesterase promoter, exhibited thicker PNS and CNS myelin sheaths, and PNS myelin abnormalities, such as tomacula and myelin infoldings/outfoldings, centered around the paranodes and Schmidt Lanterman incisures. These effects were corrected by rapamycin treatmentin vivo Importantly, Akt activity in the transgenic mice did not induce myelination of nonmyelinating Schwann cells in the sympathetic trunk or Remak fibers of the dorsal roots, although, in those structures, they wrapped membranes redundantly around axons. Together, our data indicate that Akt is crucial for PNS myelination driving axonal wrapping by unmyelinated and myelinated Schwann cells and enhancing myelin protein synthesis in myelinating Schwann cells. SIGNIFICANCE STATEMENT: Although the role of the key serine/threonine kinase Akt in promoting CNS myelination has been demonstrated, its role in the PNS has not been established and remains uncertain. This work reveals that Akt controls several key steps of the PNS myelination. First, its activity promotes membrane production and axonal wrapping independent of a transcriptional effect. In myelinated axons, it also enhances myelin thickness through the mTOR pathway. Finally, sustained Akt activation in Schwann cells leads to hypermyelination/dysmyelination, mimicking some features present in neuropathies, such as hereditary neuropathy with liability to pressure palsies or demyelinating forms of Charcot-Marie-Tooth disease. Together, these data demonstrate the role of Akt in regulatory mechanisms underlying axonal wrapping and myelination in the PNS.


Asunto(s)
Axones/fisiología , Vaina de Mielina/fisiología , Proteína Oncogénica v-akt/fisiología , Nervio Ciático/fisiología , Animales , Axones/ultraestructura , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/ultraestructura , Nervios Periféricos/fisiología , Nervios Periféricos/ultraestructura , Sistema Nervioso Periférico/fisiología , Sistema Nervioso Periférico/ultraestructura , Nervio Ciático/ultraestructura
3.
Cell Rep ; 13(10): 2090-7, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26628380

RESUMEN

Reactive astrogliosis is an essential and ubiquitous response to CNS injury, but in some cases, aberrant activation of astrocytes and their release of inhibitory signaling molecules can impair endogenous neural repair processes. Our lab previously identified a secreted intercellular signaling molecule, called endothelin-1 (ET-1), which is expressed at high levels by reactive astrocytes in multiple sclerosis (MS) lesions and limits repair by delaying oligodendrocyte progenitor cell (OPC) maturation. However, as ET receptors are widely expressed on neural cells, the cell- and receptor-specific mechanisms of OPC inhibition by ET-1 action remain undefined. Using pharmacological approaches and cell-specific endothelin receptor (EDNR) ablation, we show that ET-1 acts selectively through EDNRB on astrocytes--and not OPCs--to indirectly inhibit remyelination. These results demonstrate that targeting specific pathways in reactive astrocytes represents a promising therapeutic target in diseases with extensive reactive astrogliosis, including MS.


Asunto(s)
Astrocitos/metabolismo , Enfermedades Desmielinizantes/metabolismo , Células-Madre Neurales/metabolismo , Receptor de Endotelina B/metabolismo , Animales , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Endotelina-1/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Electrónica de Transmisión , Células-Madre Neurales/citología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Regeneración/fisiología
4.
Neuron ; 81(3): 588-602, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24507193

RESUMEN

Oligodendrocyte progenitor cells (OPCs) can repair demyelinated lesions by maturing into myelin-producing oligodendrocytes. However, the OPC potential to differentiate can be prevented by inhibitory signals present in the pathological lesion environment. Identification of these signals is essential to promote OPC differentiation and lesion repair. We identified an endogenous inhibitor of remyelination, Endothelin-1 (ET-1), which is highly expressed in reactive astrocytes of demyelinated lesions. Using both gain- and loss-of-function approaches, we demonstrate that ET-1 drastically reduces the rate of remyelination. We also discovered that ET-1 acts mechanistically by promoting Notch activation in OPCs during remyelination through induction of Jagged1 expression in reactive astrocytes. Pharmacological inhibition of ET signaling prevented Notch activation in demyelinated lesions and accelerated remyelination. These findings reveal that ET-1 is a negative regulator of OPC differentiation and remyelination and is potentially a therapeutic target to promote lesion repair in demyelinated tissue.


Asunto(s)
Astrocitos/metabolismo , Enfermedades Desmielinizantes/patología , Endotelina-1/metabolismo , Regulación de la Expresión Génica/fisiología , Receptores Notch/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/ultraestructura , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Endotelina-1/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteínas Fluorescentes Verdes/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Lipopolisacáridos/farmacología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligopéptidos/farmacología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteínas Serrate-Jagged , Células Madre/efectos de los fármacos , Células Madre/fisiología
6.
Nat Neurosci ; 11(9): 1024-34, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19160500

RESUMEN

The efficiency of remyelination decreases with age, but the molecular mechanisms responsible for this decline remain only partially understood. In this study, we show that remyelination is regulated by age-dependent epigenetic control of gene expression. In demyelinated young brains, new myelin synthesis is preceded by downregulation of oligodendrocyte differentiation inhibitors and neural stem cell markers, and this is associated with recruitment of histone deacetylases (HDACs) to promoter regions. In demyelinated old brains, HDAC recruitment is inefficient, and this allows the accumulation of transcriptional inhibitors and prevents the subsequent surge in myelin gene expression. Defective remyelination can be recapitulated in vivo in mice receiving systemic administration of pharmacological HDAC inhibitors during cuprizone treatment and is consistent with in vitro results showing defective differentiation of oligodendrocyte progenitors after silencing specific HDAC isoforms. Thus, we suggest that inefficient epigenetic modulation of the oligodendrocyte differentiation program contributes to the age-dependent decline in remyelination efficiency.


Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Enfermedades Desmielinizantes/fisiopatología , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Proteínas de la Mielina/metabolismo , Regeneración/fisiología , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Epigénesis Genética/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Proteínas de la Mielina/genética , Sistemas Neurosecretores/efectos de los fármacos , Sistemas Neurosecretores/patología , Ratas , Regeneración/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Ácido Valproico/farmacología
7.
Nat Neurosci ; 10(8): 990-1002, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17618276

RESUMEN

Cellular strategies for oligodendrocyte regeneration and remyelination involve characterizing endogenous neural progenitors that are capable of generating oligodendrocytes during normal development and after demyelination, and identifying the molecular signals that enhance oligodendrogenesis from these progenitors. Using both gain- and loss-of-function approaches, we explored the role of epidermal growth factor receptor (EGFR) signaling in adult myelin repair and in oligodendrogenesis. We show that 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter-driven overexpression of human EGFR (hEGFR) accelerated remyelination and functional recovery following focal demyelination of mouse corpus callosum. Lesion repopulation by Cspg4+ (also known as NG2) Ascl1+ (also known as Mash1) Olig2+ progenitors and functional remyelination were accelerated in CNP-hEGFR mice compared with wild-type mice. EGFR overexpression in subventricular zone (SVZ) and corpus callosum during early postnatal development also expanded this NG2+Mash1+Olig2+ progenitor population and promoted SVZ-to-lesion migration, enhancing oligodendrocyte generation and axonal myelination. Analysis of hypomorphic EGFR-mutant mice confirmed that EGFR signaling regulates oligodendrogenesis and remyelination by NG2+Mash1+Olig2+ progenitors. EGFR targeting holds promise for enhancing oligodendrocyte regeneration and myelin repair.


Asunto(s)
Enfermedades Desmielinizantes/fisiopatología , Receptores ErbB/fisiología , Vaina de Mielina/fisiología , Regeneración Nerviosa/fisiología , Oligodendroglía/fisiología , Transducción de Señal/fisiología , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa , Células Madre Adultas/fisiología , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Proliferación Celular , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Factor de Crecimiento Epidérmico/genética , Receptores ErbB/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lisofosfatidilcolinas , Ratones , Ratones Mutantes , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/ultraestructura , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo
8.
Neuron ; 55(2): 217-30, 2007 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-17640524

RESUMEN

The progression of progenitors to oligodendrocytes requires proliferative arrest and the activation of a transcriptional program of differentiation. While regulation of cell cycle exit has been extensively characterized, the molecular mechanisms responsible for the initiation of differentiation remain ill-defined. Here, we identify the transcription factor Yin Yang 1 (YY1) as a critical regulator of oligodendrocyte progenitor differentiation. Conditional ablation of yy1 in the oligodendrocyte lineage in vivo induces a phenotype characterized by defective myelination, ataxia, and tremor. At the cellular level, lack of yy1 arrests differentiation of oligodendrocyte progenitors after they exit from the cell cycle. At the molecular level, YY1 acts as a lineage-specific repressor of transcriptional inhibitors of myelin gene expression (Tcf4 and Id4), by recruiting histone deacetylase-1 to their promoters during oligodendrocyte differentiation. Thus, we identify YY1 as an essential component of the transcriptional network regulating the transition of oligodendrocyte progenitors from cell cycle exit to differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Oligodendroglía/metabolismo , Células Madre/metabolismo , Factor de Transcripción YY1/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Linaje de la Célula/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Oligodendroglía/citología , Células Madre/citología , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA