Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
ACS Infect Dis ; 10(5): 1612-1623, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597503

RESUMEN

Fusobacterium nucleatum, a pathobiont inhabiting the oral cavity, contributes to opportunistic diseases, such as periodontal diseases and gastrointestinal cancers, which involve microbiota imbalance. Broad-spectrum antimicrobial agents, while effective against F. nucleatum infections, can exacerbate dysbiosis. This necessitates the discovery of more targeted narrow-spectrum antimicrobial agents. We therefore investigated the potential for the fusobacterial enoyl-ACP reductase II (ENR II) isoenzyme FnFabK (C4N14_ 04250) as a narrow-spectrum drug target. ENRs catalyze the rate-limiting step in the bacterial fatty acid synthesis pathway. Bioinformatics revealed that of the four distinct bacterial ENR isoforms, F. nucleatum specifically encodes FnFabK. Genetic studies revealed that fabK was indispensable for F. nucleatum growth, as the gene could not be deleted, and silencing of its mRNA inhibited growth under the test conditions. Remarkably, exogenous fatty acids failed to rescue growth inhibition caused by the silencing of fabK. Screening of synthetic phenylimidazole analogues of a known FabK inhibitor identified an inhibitor (i.e., 681) of FnFabK enzymatic activity and F. nucleatum growth, with an IC50 of 2.1 µM (1.0 µg/mL) and a MIC of 0.4 µg/mL, respectively. Exogenous fatty acids did not attenuate the activity of 681 against F. nucleatum. Furthermore, FnFabK was confirmed as the intracellular target of 681 based on the overexpression of FnFabK shifting MICs and 681-resistant mutants having amino acid substitutions in FnFabK or mutations in other genetic loci affecting fatty acid biosynthesis. 681 had minimal activity against a range of commensal flora, and it was less active against streptococci in physiologic fatty acids. Taken together, FnFabK is an essential enzyme that is amenable to drug targeting for the discovery and development of narrow-spectrum antimicrobial agents.


Asunto(s)
Antibacterianos , Fusobacterium nucleatum , Fusobacterium nucleatum/enzimología , Fusobacterium nucleatum/efectos de los fármacos , Fusobacterium nucleatum/genética , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Enoil-ACP Reductasa (NADH)/genética , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Enoil-ACP Reductasa (NADH)/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Ácidos Grasos/química , Infecciones por Fusobacterium/microbiología , Infecciones por Fusobacterium/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
2.
Clin Infect Dis ; 79(1): 15-21, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38382090

RESUMEN

BACKGROUND: Epidemiologic studies have shown decreasing vancomycin susceptibility among clinical Clostridioides difficile isolates, but the impact on patient outcomes is unknown. We hypothesized that reduced vancomycin susceptibility would be associated with decreased rates of sustained clinical response (SCR). METHODS: This multicenter cohort study included adults with C. difficile infection (CDI) treated with oral vancomycin between 2016 and 2021. Clostridioides difficile isolates underwent agar dilution vancomycin susceptibility testing, ribotyping, and Sanger sequencing of the vancomycin resistance vanR gene. Reduced susceptibility was defined as vancomycin minimum inhibitory concentration (MIC) >2 µg/mL. The primary outcome was 30-day SCR; secondary outcomes were 14-day initial cure, 30-day recurrence, and 30-day mortality. Exploratory analysis assessed the association between the VanR Thr115Ala polymorphism, susceptibility, and outcomes. RESULTS: A high proportion (34% [102/300]) of C. difficile isolates exhibited reduced vancomycin susceptibility (range, 0.5-16 µg/mL; MIC50/90 = 2/4 µg/mL). Ribotype 027 accounted for the highest proportion (77.4% [41/53]) of isolates with reduced vancomycin susceptibility. Overall, 83% (249) of patients achieved 30-day SCR. Reduced vancomycin susceptibility was associated with lower rates of 30-day SCR (76% [78/102]) than vancomycin-susceptible strains (86% [171/198]; P = .031). A significantly lower rate of 14-day initial cure was also observed among individuals infected with strains with reduced vancomycin susceptibility (89% vs 96%; P = .04). Reduced susceptibility remained an independent predictor of 30-day SCR in multivariable modeling (odds ratio, 0.52 [95% confidence interval, .28-.97]; P = .04). CONCLUSIONS: Reduced vancomycin susceptibility in C. difficile was associated with decreased odds of 30-day SCR and lower 14-day initial cure rates in the studied patient cohort.


Asunto(s)
Antibacterianos , Clostridioides difficile , Infecciones por Clostridium , Pruebas de Sensibilidad Microbiana , Vancomicina , Humanos , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Vancomicina/uso terapéutico , Vancomicina/farmacología , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Masculino , Femenino , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Persona de Mediana Edad , Anciano , Resistencia a la Vancomicina/genética , Estudios de Cohortes , Resultado del Tratamiento , Adulto , Ribotipificación , Anciano de 80 o más Años
3.
World J Microbiol Biotechnol ; 40(2): 62, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38182914

RESUMEN

Indigo is a widely used dye in various industries, such as textile, cosmetics, and food. However, traditional methods of indigo extraction and processing are associated with environmental and economic challenges. Fermentative production of indigo using microbial strains has emerged as a promising alternative that offers sustainability and cost-effectiveness. This review article provides a critical overview of microbial diversity, metabolic pathways, fermentation strategies, and genetic engineering approaches for fermentative indigo production. The advantages and limitations of different indigo production systems and a critique of the current understanding of indigo biosynthesis are discussed. Finally, the potential application of indigo in other sectors is also discussed. Overall, fermentative production of indigo offers a sustainable and bio-based alternative to synthetic methods and has the potential to contribute to the development of sustainable and circular biomanufacturing.


Asunto(s)
Carmin de Índigo , Indigofera , Fermentación , Alimentos , Ingeniería Genética
4.
Antimicrob Agents Chemother ; 68(3): e0122223, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265216

RESUMEN

Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea, which often stems from disruption of the gut microbiota by broad-spectrum antibiotics. The increasing prevalence of antibiotic-resistant C. difficile strains, combined with disappointing clinical trial results for recent antibiotic candidates, underscores the urgent need for novel CDI antibiotics. To this end, we investigated C. difficile enoyl ACP reductase (CdFabK), a crucial enzyme in de novo fatty acid synthesis, as a drug target for microbiome-sparing antibiotics. To test this concept, we evaluated the efficacy and in vivo spectrum of activity of the phenylimidazole analog 296, which is validated to inhibit intracellular CdFabK. Against major CDI-associated ribotypes 296 had an Minimum inhibitory concentration (MIC90) of 2 µg/mL, which was comparable to vancomycin (1 µg/mL), a standard of care antibiotic. In addition, 296 achieved high colonic concentrations and displayed dosed-dependent efficacy in mice with colitis CDI. Mice that were given 296 retained colonization resistance to C. difficile and had microbiomes that resembled the untreated mice. Conversely, both vancomycin and fidaxomicin induced significant changes to mice microbiomes, in a manner consistent with prior reports. CdFabK, therefore, represents a potential target for microbiome-sparing CDI antibiotics, with phenylimidazoles providing a good chemical starting point for designing such agents.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Ratones , Vancomicina/farmacología , Oxidorreductasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fidaxomicina/farmacología , Infecciones por Clostridium/tratamiento farmacológico
5.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790427

RESUMEN

Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea, which often stem from disruption of the gut microbiota by broad-spectrum antibiotics. The increasing prevalence of antibiotic-resistant C. difficile strains, combined with disappointing clinical trials results for recent antibiotic candidates, underscore the urgent need for novel CDI antibiotics. To this end, we investigated C. difficile enoyl ACP reductase (CdFabK), a crucial enzyme in de novo fatty acid synthesis, as a drug target for microbiome-sparing antibiotics. To test this concept, we evaluated the efficacy and in vivo spectrum of activity of the phenylimidazole analog 296, which is validated to inhibit intracellular CdFabK. Against major CDI-associated ribotypes 296 had an MIC90 of 2 µg/ml, which was comparable to vancomycin (1 µg/ml), a standard of care antibiotic. In addition, 296 achieved high colonic concentrations and displayed dosed-dependent efficacy in mice with colitis CDI. Mice that were given 296 retained colonization resistance to C. difficile and had microbiomes that resembled the untreated mice. Conversely, both vancomycin and fidaxomicin induced significant changes to mice microbiomes, in a manner consistent with prior reports. CdFabK therefore represents a potential target for microbiome-sparing CDI antibiotics, with phenylimidazoles providing a good chemical starting point for designing such agents.

6.
Nat Commun ; 14(1): 4130, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438331

RESUMEN

Severe outbreaks and deaths have been linked to the emergence and global spread of fluoroquinolone-resistant Clostridioides difficile over the past two decades. At the same time, metronidazole, a nitro-containing antibiotic, has shown decreasing clinical efficacy in treating C. difficile infection (CDI). Most metronidazole-resistant C. difficile exhibit an unusual resistance phenotype that can only be detected in susceptibility tests using molecularly intact heme. Here, we describe the mechanism underlying this trait. We find that most metronidazole-resistant C. difficile strains carry a T-to-G mutation (which we term PnimBG) in the promoter of gene nimB, resulting in constitutive transcription. Silencing or deleting nimB eliminates metronidazole resistance. NimB is related to Nim proteins that are known to confer resistance to nitroimidazoles. We show that NimB is a heme-dependent flavin enzyme that degrades nitroimidazoles to amines lacking antimicrobial activity. Furthermore, occurrence of the PnimBG mutation is associated with a Thr82Ile substitution in DNA gyrase that confers fluoroquinolone resistance in epidemic strains. Our findings suggest that the pandemic of fluoroquinolone-resistant C. difficile occurring over the past few decades has also been characterized by widespread resistance to metronidazole.


Asunto(s)
Clostridioides difficile , Nitroimidazoles , Metronidazol/farmacología , Clostridioides difficile/genética , Fluoroquinolonas/farmacología , Nitroimidazoles/farmacología , Clostridioides , Hemo , Pandemias
7.
Bioorg Med Chem ; 88-89: 117330, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37224699

RESUMEN

Previously, 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-(pyridin-2-ylthio)thiazol-2-yl)urea bearing a p-bromine substitution was shown to possess selective inhibitory activity against the Clostridioides difficile enoyl-acyl carrier protein (ACP) reductase II enzyme, FabK. Inhibition of CdFabK by this compound translated to promising antibacterial activity in the low micromolar range. In these studies, we sought to expand our knowledge of the SAR of the phenylimidazole CdFabK inhibitor series while improving the potency of the compounds. Three main series of compounds were synthesized and evaluated based on: 1) pyridine head group modifications including the replacement with a benzothiazole moiety, 2) linker explorations, and 3) phenylimidazole tail group modifications. Overall, improvement in the CdFabK inhibition was achieved, while maintaining the whole cell antibacterial activity. Specifically, compounds 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-((3-(trifluoromethyl)pyridin-2-yl)thio)thiazol-2-yl)urea, 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(6-(trifluoromethyl)benzo[d]thiazol-2-yl)urea, and 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(6-chlorobenzo[d]thiazol-2-yl)urea showed CdFabK inhibition (IC50 = 0.10 to 0.24 µM), a 5 to 10-fold improvement in biochemical activity relative to 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-(pyridin-2-ylthio)thiazol-2-yl)urea, with anti-C. difficile activity ranging from 1.56 to 6.25 µg/mL. Detailed analysis of the expanded SAR, supported by computational analysis, is presented.


Asunto(s)
Enoil-ACP Reductasa (NADH) , Urea , Urea/farmacología , Antibacterianos/química , Relación Estructura-Actividad
9.
Curr Opin Microbiol ; 66: 63-72, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35077947

RESUMEN

The evolution of antimicrobial resistance in Clostridioides difficile has markedly shaped its epidemiology and detrimentally impacted patient care. C. difficile exhibits resistance to multiple classes of antimicrobials, due to accumulation of horizontally acquired resistance genes and de novo mutations to drug targets. Particularly worrying is that declines in clinical success of firstline CDI antimicrobials coincide with the spread of strains that are more resistant to these drugs. Yet, there is still much to learn regarding the prevalence of genetic elements in clinical isolates, their molecular mechanisms, and the extent to which this information can be translated to develop molecular diagnostics that improve antimicrobial prescribing and antimicrobial stewardship approaches for CDI. Thus, this perspective discusses current understanding and knowledge gaps of antimicrobial resistance mechanisms in C. difficile, emphasizing on CDI therapies.


Asunto(s)
Antiinfecciosos , Clostridioides difficile , Infecciones por Clostridium , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Clostridioides , Clostridioides difficile/genética , Infecciones por Clostridium/tratamiento farmacológico , Farmacorresistencia Bacteriana/genética , Humanos , Pruebas de Sensibilidad Microbiana
10.
Cell Death Dis ; 9(2): 23, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348560

RESUMEN

Protein kinase C (PKC) isozymes play major roles in human diseases, including cancer. Yet, the poor understanding of isozymes-specific functions and the limited availability of selective pharmacological modulators of PKC isozymes have limited the clinical translation of PKC-targeting agents. Here, we report the first small-molecule PKCδ-selective activator, the 7α-acetoxy-6ß-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), which binds to the PKCδ-C1-domain. Roy-Bz potently inhibited the proliferation of colon cancer cells by inducing a PKCδ-dependent mitochondrial apoptotic pathway involving caspase-3 activation. In HCT116 colon cancer cells, Roy-Bz specifically triggered the translocation of PKCδ but not other phorbol ester responsive PKCs. Roy-Bz caused a marked inhibition in migration of HCT116 cells in a PKCδ-dependent manner. Additionally, the impairment of colonosphere growth and formation, associated with depletion of stemness markers, indicate that Roy-Bz also targets drug-resistant cancer stem cells, preventing tumor dissemination and recurrence. Notably, in xenograft mouse models, Roy-Bz showed a PKCδ-dependent antitumor effect, through anti-proliferative, pro-apoptotic, and anti-angiogenic activities. Besides, Roy-Bz was non-genotoxic, and in vivo it had no apparent toxic side effects. Collectively, our findings reveal a novel promising anticancer drug candidate. Most importantly, Roy-Bz opens the way to a new era on PKC biology and pharmacology, contributing to the potential redefinition of the structural requirements of isozyme-selective agents, and to the re-establishment of PKC isozymes as feasible therapeutic targets in human diseases.


Asunto(s)
Neoplasias del Colon/terapia , Proteína Quinasa C-delta/uso terapéutico , Neoplasias del Colon/patología , Humanos , Proteína Quinasa C-delta/farmacología
11.
Microbiology (Reading) ; 163(12): 1924-1936, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29099689

RESUMEN

Small RNA (sRNA)-mediated regulation of gene expression is a major tool to understand bacterial responses to environmental changes. In particular, pathogenic bacteria employ sRNAs to adapt to the host environment and establish infection. Members of the Burkholderia cepacia complex, normally present in soil microbiota, cause nosocomial lung infection especially in hospitalized cystic fibrosis patients. We sequenced the draft genome of Burkholderia cenocepacia KC-01, isolated from the coastal saline soil, and identified several potential sRNAs in silico. Expression of seven small RNAs (Bc_KC_sr1-7) was subsequently confirmed. Two sRNAs (Bc_KC_sr1 and Bc_KC_sr2) were upregulated in response to iron depletion by 2,2'-bipyridyl and another two (Bc_KC_sr3 and Bc_KC_sr4) responded to the presence of 60 µM H2O2 in the culture media. Bc_Kc_sr5, 6 and 7 remained unchanged under these conditions. Expression of Bc_KC_sr2, 3 and 4 also altered with a change in temperature and incubation time. A search in the Rfam and BSRD databases identified Bc_Kc_sr4 as candidate738 in B. pseudomallei D286 and assigned Bc_Kc_sr5 and 6 as tmRNA and 6S RNA, respectively. The novel sRNAs were conserved in Burkholderiaceae but did not have any homologue in other genera. Bc_KC_sr1 and 4 were transcribed independently while the rest were part of the 3' UTR of their upstream genes. TargetRNA2 predicted that these sRNAs could target a host of cellular messages with very high stringency. Intriguingly, regions surrounding the translation initiation site for several enzymes involved in Fe-S cluster and siderophore biosynthesis, ROS homeostasis, porins, transcription and translation regulators, were among the suggested putative binding sites for these sRNAs.

12.
Appl Microbiol Biotechnol ; 101(20): 7635-7652, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28879447

RESUMEN

Probiotic industries strive for new, efficient and promising probiotic strains that impart a positive impact on consumer health. Challenges are persisting in isolation, screening, and selection of the new indigenous probiotic strains. In the present research, we explored the probiotic potential of 17 lactic acid bacteria isolated from Yak milk in a series of in vitro tests. We also demonstrated their health benefits, i.e., cholesterol degradation, lactose digestion, antimicrobial activity, antioxidant, and anticancer activities. Principal component analysis revealed that more than 50% of the strains fulfilled the examined criteria, e.g., survival in acidic pH, bile concentrations, and adherent property. Approximately all the strains produced antimicrobial substances against the maximum number of tested strains including clinical strains. Most strains degraded cholesterol in comparison to the reference probiotic strain whereas strain Yc showed 1.5 times higher the degradation efficiency of the control strain. Lan4 strain exhibited remarkable anticancer activity and induced the maximum apoptosis (87%) in the Hela cells and was non-toxic to the non-cancerous HEK293 cells. Around ten strains showed positive lactose digestion. Overall, this can be concluded that selected lactic acid bacteria revealed excellent probiotic properties along with desirable health benefits. These strains need to be further investigated in details for their application in the development of novel probiotic preparations for the improvement of public health.


Asunto(s)
Lactobacillales/aislamiento & purificación , Lactobacillales/fisiología , Leche/microbiología , Probióticos/aislamiento & purificación , Animales , Antiinfecciosos/metabolismo , Antineoplásicos/metabolismo , Adhesión Bacteriana , Bilis , Bovinos , Supervivencia Celular , Colesterol/metabolismo , Células Epiteliales/fisiología , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Lactobacillales/clasificación , Lactosa/metabolismo , Viabilidad Microbiana/efectos de los fármacos
13.
PLoS One ; 9(11): e112551, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25409321

RESUMEN

Escherichia coli is generally considered as a commensal inhabitant of gastrointestinal tract of humans and animals. The aim of this study was to gain insight on the distribution of phylotypes and presence of genes encoding integrons, extended ß-lactamases and resistance to other antimicrobials in the commensal E. coli isolates from healthy adults in Chandigarh, India. PCR and DNA sequencing were used for phylogenetic classification, detections of integrase genes, gene cassettes within the integron and extended ß-lactamases. The genetic structure of E. coli revealed a non-uniform distribution of isolates among the seven phylogenetic groups with significant representation of group A. Integron-encoded integrases were detected in 25 isolates with class 1 integron-encoded intI1 integrase being in the majority (22 isolates). The gene cassettes identified were those for trimethoprim, streptomycin, spectinomycin and streptothricin. The dfrA12-orfF-aadA2 was the most commonly found gene cassette in intI1 positive isolates. Phenotypic assay for screening the potential ESBL producers suggested 16 isolates to be ESBL producers. PCR detection using gene-specific primers showed that 15 out of these 16 ESBL-producing E. coli harboured the blaCTX-M-15 gene. Furthermore, molecular studies helped in characterizing the genes responsible for tetracycline, chloramphenicol and sulphonamides resistance. Collectively, our study outlines the intra-species phylogenetic structure and highlights the prevalence of class 1 integron and blaCTX-M-15 in commensal E. coli isolates of healthy adults in Chandigarh, India. Our findings further reinforce the relevance of commensal E. coli strains on the growing burden of antimicrobial resistance.


Asunto(s)
Escherichia coli/clasificación , Escherichia coli/genética , Salud , Integrones/genética , Filogenia , beta-Lactamasas/genética , Adolescente , Adulto , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Heces/microbiología , Femenino , Humanos , Masculino , Adulto Joven
14.
Gut Pathog ; 5(1): 20, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23895343

RESUMEN

BACKGROUND: Vibrio fluvialis is an emerging diarrheal pathogen for which no genome is currently available. In this work, draft genomes of two closely related clinical strains PG41 and I21563 have been explored. RESULTS: V. fluvialis strains PG41 and I21563 were sequenced on the Illumina HiSeq 1000 platform to obtain draft genomes of 5.3 Mbp and 4.4 Mbp respectively. Our genome data reveal the presence of genes involved in ethanolamine utilization, which is further experimentally confirmed by growth analysis. CONCLUSIONS: Combined in silico and growth analysis establish a new metabolic capacity of V. fluvialis to harvest energy from ethanolamine.

15.
Gene ; 525(1): 116-23, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23680644

RESUMEN

VopF, the type III effector molecule, has been implicated in the pathogenesis of non-O1, non-O139 strains of Vibrio cholerae. It is a protein of 530 amino acids, comprises of one formin homology 1-like (FH1-like) domain and three WASP homology 2 (WH2) domains. Previous works have demonstrated that WH2 domains are crucial for VopF function as a modulator of cellular actin homeostasis. Furthermore, domain deletion analysis also suggests that VopF variant constituted with only WH2 domain 3 is more efficient in restricting the growth of budding yeast than its congeners containing either only domain 1 or domain 2. Interestingly, a good degree of sequence diversity is present within each WH2 domain of VopF. In order to ascertain the importance of different amino acids in each WH2 domain, a systemic alanine scanning mutagenesis was employed. Using a yeast model system, the alanine derivatives of each amino acid of WH2 domain 1 and 3 of VopF were examined for growth restricting activity. Taken together, our mutagenesis results reveal the identification of critical residues of WH2 domain 1 and 3 of VopF.


Asunto(s)
Alanina/genética , Proteínas Bacterianas/genética , Saccharomyces cerevisiae/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Actinas/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Proteínas Fúngicas/genética , Homeostasis/genética , Datos de Secuencia Molecular , Mutagénesis , Estructura Terciaria de Proteína , Alineación de Secuencia , Vibrio cholerae/genética
16.
Genome Announc ; 1(1)2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23405333

RESUMEN

We report the 4.1-Mb draft genome sequence of Morganella morganii SC01, a gammaproteobacterium, isolated from an Indian human fecal sample.

17.
J Biol Chem ; 286(17): 15043-9, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21383015

RESUMEN

HapR has been recognized as a quorum-sensing master regulator in Vibrio cholerae. Because it controls a plethora of disparate cellular events, the absence of a functional HapR affects the physiology of V. cholerae to a great extent. In the current study, we pursued an understanding of an observation of a natural protease-deficient non-O1, non-O139 variant V. cholerae strain V2. Intriguingly, a nonfunctional HapR (henceforth designated as HapR(V2)) harboring a substitution of glycine to aspartate at position 39 of the N-terminal hinge region has been identified. An in vitro gel shift assay clearly suggested the inability of HapR(V2) to interact with various cognate promoters. Reinstatement of glycine at position 39 restores DNA binding ability of HapR(V2) (HapR(V2G)), thereby rescuing the protease-negative phenotype of this strain. The elution profile of HapR(V2) and HapR(V2G) proteins in size-exclusion chromatography and their circular dichroism spectra did not reflect any significant differences to explain the functional discrepancies between the two proteins. To gain insight into the structure-function relationship of these two proteins, we acquired small/wide angle x-ray scattering data from samples of the native and G39D mutant. Although Guinier analysis and indirect Fourier transformation of scattering indicated only a slight difference in the shape parameters, structure reconstruction using dummy amino acids concluded that although HapR adopts a "Y" shape similar to its crystal structure, the G39D mutation in hinge drastically altered the DNA binding domains by bringing them in close proximity. This altered spatial orientation of the helix-turn-helix domains in this natural variant provides the first structural evidence on the functional role of the hinge region in quorum sensing-related DNA-binding regulatory proteins of Vibrio spp.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , ADN/metabolismo , Glicina/fisiología , Percepción de Quorum/genética , Vibrio cholerae/fisiología , Proteínas Bacterianas/química , Proteínas de Unión al ADN , Variación Genética , Estructura Secundaria de Proteína/fisiología
19.
J Med Microbiol ; 59(Pt 1): 17-24, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19779031

RESUMEN

VopF, a type III effector protein, has been identified as a contributory factor to the intestinal colonization of type III secretion system-positive, non-O1, non-O139 Vibrio cholerae strains. To gain more insight into the function of VopF, a yeast model was developed. Using this model, it was found that ectopic expression of VopF conferred toxicity in yeast.


Asunto(s)
Proteínas Bacterianas/metabolismo , Saccharomyces cerevisiae/metabolismo , Vibrio cholerae no O1/clasificación , Vibrio cholerae no O1/metabolismo , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Regulación Fúngica de la Expresión Génica/fisiología , Saccharomyces cerevisiae/genética , Vibrio cholerae no O1/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA