Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Elife ; 132024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864493

RESUMEN

Glycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance. In this work, we show through over 45 µs of cumulative sampling from conventional and enhanced molecular dynamics (MD) simulations, how the structure of the immunodominant S receptor binding domain (RBD) is regulated by N-glycosylation at N343 and how this glycan's structural role changes from WHu-1, alpha (B.1.1.7), and beta (B.1.351), to the delta (B.1.617.2), and omicron (BA.1 and BA.2.86) variants. More specifically, we find that the amphipathic nature of the N-glycan is instrumental to preserve the structural integrity of the RBD hydrophobic core and that loss of glycosylation at N343 triggers a specific and consistent conformational change. We show how this change allosterically regulates the conformation of the receptor binding motif (RBM) in the WHu-1, alpha, and beta RBDs, but not in the delta and omicron variants, due to mutations that reinforce the RBD architecture. In support of these findings, we show that the binding of the RBD to monosialylated ganglioside co-receptors is highly dependent on N343 glycosylation in the WHu-1, but not in the delta RBD, and that affinity changes significantly across VoCs. Ultimately, the molecular and functional insight we provide in this work reinforces our understanding of the role of glycosylation in protein structure and function and it also allows us to identify the structural constraints within which the glycosylation site at N343 can become a hotspot for mutations in the SARS-CoV-2 S glycan shield.


Asunto(s)
Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicosilación , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Humanos , COVID-19/virología , COVID-19/metabolismo , Polisacáridos/metabolismo , Polisacáridos/química , Dominios Proteicos , Sitios de Unión , Conformación Proteica , Mutación
2.
Methods Mol Biol ; 2810: 99-121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926275

RESUMEN

The continuous improvement of expression platforms is necessary to respond to the increasing demand for recombinant proteins that are required to carry out structural or functional studies as well as for their characterization as biotherapeutics. While transient gene expression (TGE) in mammalian cells constitutes a rapid and well-established approach, non-clonal stably transfected cells, or "pools," represent another option, which is especially attractive when recurring productions of the same protein are required. From a culture volume of just a few liters, stable pools can provide hundreds of milligrams to gram quantities of high-quality secreted recombinant proteins.In this chapter, we describe a highly efficient and cost-effective procedure for the generation of Chinese Hamster Ovary cell stable pools expressing secreted recombinant proteins using commercially available serum-free media and polyethylenimine (PEI) as the transfection reagent. As a specific example of how this protocol can be applied, the production and downstream purification of recombinant His-tagged trimeric SARS-CoV-2 spike protein ectodomain (SmT1) are described.


Asunto(s)
Cricetulus , Polietileneimina , Proteínas Recombinantes , Glicoproteína de la Espiga del Coronavirus , Transfección , Células CHO , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Transfección/métodos , Polietileneimina/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/biosíntesis , Glicoproteína de la Espiga del Coronavirus/aislamiento & purificación , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Cricetinae , Medio de Cultivo Libre de Suero
3.
Anal Bioanal Chem ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942955

RESUMEN

Accurate diagnostic and serology assays are required for the continued management of the COVID-19 pandemic yet spike protein mutations and intellectual property concerns with antigens and antibodies used in various test kits render comparability assessments difficult. As the use of common, well-characterized reagents can help address this lack of standardization, the National Research Council Canada has produced two protein reference materials (RMs) for use in SARS-CoV-2 serology assays: biotinylated human angiotensin-converting enzyme 2 RM, ACE2-1, and SARS-CoV-2 Omicron BA.4/5 spike protein RM, OMIC-1. Reference values were assigned through a combination of amino acid analysis via isotope dilution liquid chromatography tandem mass spectrometry following acid hydrolysis, and ultraviolet-visible (UV-Vis) spectrophotometry at 280 nm. Vial-to-vial homogeneity was established using UV-Vis measurements, and protein oligomeric status, monitored by size exclusion liquid chromatography (LC-SEC), was used to evaluate transportation, storage, and freeze-thaw stabilities. The molar protein concentration in ACE2-1 was 25.3 ± 1.7 µmol L-1 (k = 2, 95% CI) and consisted almost exclusively (98%) of monomeric ACE2, while OMIC-1 contained 5.4 ± 0.5 µmol L-1 (k = 2) spike protein in a mostly (82%) trimeric form. Glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection facilitated calculation of corresponding mass concentrations. To confirm protein functionality, the binding of OMIC-1 to immobilized ACE2-1 was investigated with surface plasmon resonance and the resulting dissociation constant, KD ~ 4.4 nM, was consistent with literature values.

4.
Biotechnol Prog ; : e3467, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660973

RESUMEN

The recent COVID-19 pandemic revealed an urgent need to develop robust cell culture platforms which can react rapidly to respond to this kind of global health issue. Chinese hamster ovary (CHO) stable pools can be a vital alternative to quickly provide gram amounts of recombinant proteins required for early-phase clinical assays. In this study, we analyze early process development data of recombinant trimeric spike protein Cumate-inducible manufacturing platform utilizing CHO stable pool as a preferred production host across three different stirred-tank bioreactor scales (0.75, 1, and 10 L). The impact of cell passage number as an indicator of cell age, methionine sulfoximine (MSX) concentration as a selection pressure, and cell seeding density was investigated using stable pools expressing three variants of concern. Multivariate data analysis with principal component analysis and batch-wise unfolding technique was applied to evaluate the effect of critical process parameters on production variability and a random forest (RF) model was developed to forecast protein production. In order to further improve process understanding, the RF model was analyzed with Shapley value dependency plots so as to determine what ranges of variables were most associated with increased protein production. Increasing longevity, controlling lactate build-up, and altering pH deadband are considered promising approaches to improve overall culture outcomes. The results also demonstrated that these pools are in general stable expressing similar level of spike proteins up to cell passage 11 (~31 cell generations). This enables to expand enough cells required to seed large volume of 200-2000 L bioreactor.

5.
Front Immunol ; 15: 1387534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650936

RESUMEN

For several years, we have been committed to exploring the potential of Bordetella pertussis-derived outer membrane vesicles (OMVBp) as a promising third-generation vaccine against the reemerging pertussis disease. The results of our preclinical trials not only confirm its protective capacity against B. pertussis infection but also set the stage for forthcoming human clinical trials. This study delves into the examination of OMVBp as an adjuvant. To accomplish this objective, we implemented a two-dose murine schedule to evaluate the specific immune response induced by formulations containing OMVBp combined with 3 heterologous immunogens: Tetanus toxoid (T), Diphtheria toxoid (D), and the SARS-CoV-2 Spike protein (S). The specific levels of IgG, IgG1, and IgG2a triggered by the different tested formulations were evaluated using ELISA in dose-response assays for OMVBp and the immunogens at varying levels. These assays demonstrated that OMVBp exhibits adjuvant properties even at the low concentration employed (1.5 µg of protein per dose). As this effect was notably enhanced at medium (3 µg) and high concentrations (6 µg), we chose the medium concentration to determine the minimum immunogen dose at which the OMV adjuvant properties are significantly evident. These assays demonstrated that OMVBp exhibits adjuvant properties even at the lowest concentration tested for each immunogen. In the presence of OMVBp, specific IgG levels detected for the lowest amount of antigen tested increased by 2.5 to 10 fold compared to those found in animals immunized with formulations containing adjuvant-free antigens (p<0.0001). When assessing the adjuvant properties of OMVBp compared to the widely recognized adjuvant alum, we detected similar levels of specific IgG against D, T and S for both adjuvants. Experiments with OMVs derived from E. coli (OMVE.coli) reaffirmed that the adjuvant properties of OMVs extend across different bacterial species. Nonetheless, it's crucial to highlight that OMVBp notably skewed the immune response towards a Th1 profile (p<0.05). These collective findings emphasize the dual role of OMVBp as both an adjuvant and modulator of the immune response, positioning it favorably for incorporation into combined vaccine formulations.


Asunto(s)
Adyuvantes Inmunológicos , Bordetella pertussis , Inmunoglobulina G , Células TH1 , Tos Ferina , Bordetella pertussis/inmunología , Animales , Adyuvantes Inmunológicos/administración & dosificación , Ratones , Células TH1/inmunología , Tos Ferina/inmunología , Tos Ferina/prevención & control , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Humanos , COVID-19/inmunología , COVID-19/prevención & control , Toxoide Tetánico/inmunología
6.
Eur J Immunol ; 54(6): e2350620, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561974

RESUMEN

With the continued transmission of SARS-CoV-2 across widely vaccinated populations, it remains important to develop new vaccines and vaccination strategies capable of providing protective immunity and limiting the spread of disease. Heterologous prime-boost vaccination based on the selection of different vaccine formulations and administration routes for priming and booster doses presents a promising strategy for inducing broader immune responses in key systemic and respiratory mucosal compartments. Intranasal vaccination can induce mucosal immune responses at the site of SARS-CoV-2 infection; however, the lack of clinically approved mucosal adjuvants makes it difficult to induce robust immune responses with protein subunit vaccines. Herein, we evaluated the immunogenicity of heterologous prime-boost regimens in mice and hamsters based on a parenteral vaccination of the antigen in combination with sulfated lactosylarchaeol (SLA) archaeosomes, a liposome adjuvant comprised of a single semisynthetic archaeal lipid, followed by an intranasally administered unadjuvanted SARS-CoV-2 spike antigen. Intranasal administration of unadjuvanted spike to mice and hamsters increased serum spike-specific IgG titers and spike-neutralizing activity compared with nonboosted animals. Spike-specific IgA responses were also detected in the bronchoalveolar lavage fluid in the lungs of mice that received an intranasal boost. In hamsters, the intranasal boost showed high efficacy against SARS-CoV-2 infection by protecting from body weight loss and reducing viral titers in the lungs and nasal turbinate. Overall, our heterologous intramuscular prime-intranasal boost with SLA-adjuvanted and unadjuvanted spike, respectively, demonstrated the potential of protein subunit formulations to promote antigen-specific systemic and mucosal immune responses.


Asunto(s)
Administración Intranasal , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Ratones , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Cricetinae , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Inmunización Secundaria , Adyuvantes Inmunológicos/administración & dosificación , Ratones Endogámicos BALB C , Inmunidad Mucosa/inmunología , Humanos , Vacunación/métodos
7.
Vaccine ; 42(10): 2530-2542, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38503664

RESUMEN

Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Vacunas de Partículas Similares a Virus , Cricetinae , Animales , Humanos , Células CHO , Cricetulus , Infecciones por Virus Sincitial Respiratorio/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Herpesvirus Humano 3 , Vacunas de Subunidad
8.
Methods Mol Biol ; 2762: 89-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315361

RESUMEN

Surface plasmon resonance (SPR)-based biosensing enables the characterization of protein-protein interactions. Several SPR-based approaches have been designed to evaluate the binding mechanism between the angiotensin-converting enzyme 2 (ACE2) receptor and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein leading to a large range of kinetic and thermodynamic constants. This chapter describes a robust SPR assay based on the K5/E5 coiled-coil capture strategy that reduces artifacts. In this method, ACE2 receptors were produced with an E5-tag and immobilized as ligands in the SPR assay. This chapter details methods for high-yield production and purification of the studied proteins, functionalization of the sensor chip, conduction of the SPR assay, and data analysis.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Técnicas Biosensibles/métodos , Unión Proteica
9.
Biotechnol Bioeng ; 121(5): 1659-1673, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351869

RESUMEN

Monoclonal antibodies (MAbs) are powerful therapeutic tools in modern medicine and represent a rapidly expanding multibillion USD market. While bioprocesses are generally well understood and optimized for MAbs, online quality control remains challenging. Notably, N-glycosylation is a critical quality attribute of MAbs as it affects binding to Fcγ receptors (FcγRs), impacting the efficacy and safety of MAbs. Traditional N-glycosylation characterization methods are ill-suited for online monitoring of a bioreactor; in contrast, surface plasmon resonance (SPR) represents a promising avenue, as SPR biosensors can record MAb-FcγR interactions in real-time and without labeling. In this study, we produced five lots of differentially glycosylated Trastuzumab (TZM) and finely characterized their glycosylation profile by HILIC-UPLC chromatography. We then compared the interaction kinetics of these MAb lots with four FcγRs including FcγRIIA and FcγRIIB at 5°C and 25°C. When interacting with FcγRIIA/B at low temperature, the differentially glycosylated MAb lots exhibited distinct kinetic behaviors, contrary to room-temperature experiments. Galactosylated TZM (1) and core fucosylated TZM (2) could be discriminated and even quantified using an analytical technique based on the area under the curve of the signal recorded during the dissociation phase of a SPR sensorgram describing the interaction with FcγRIIA (1) or FcγRII2B (2). Because of the rapidity of the proposed method (<5 min per measurement) and the small sample concentration it requires (as low as 30 nM, exact concentration not required), it could be a valuable process analytical technology for MAb glycosylation monitoring.


Asunto(s)
Anticuerpos Monoclonales , Receptores de IgG , Anticuerpos Monoclonales/química , Receptores de IgG/metabolismo , Resonancia por Plasmón de Superficie , Glicosilación , Temperatura , Trastuzumab
10.
Front Immunol ; 14: 1271209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022542

RESUMEN

In this study, we evaluated the efficacy of a heterologous three-dose vaccination schedule against the Omicron BA.1 SARS-CoV-2 variant infection using a mouse intranasal challenge model. The vaccination schedules tested in this study consisted of a primary series of 2 doses covered by two commercial vaccines: an mRNA-based vaccine (mRNA1273) or a non-replicative vector-based vaccine (AZD1222/ChAdOx1, hereafter referred to as AZD1222). These were followed by a heterologous booster dose using one of the two vaccine candidates previously designed by us: one containing the glycosylated and trimeric spike protein (S) from the ancestral virus (SW-Vac 2µg), and the other from the Delta variant of SARS-CoV-2 (SD-Vac 2µg), both formulated with Alhydrogel as an adjuvant. For comparison purposes, homologous three-dose schedules of the commercial vaccines were used. The mRNA-based vaccine, whether used in heterologous or homologous schedules, demonstrated the best performance, significantly increasing both humoral and cellular immune responses. In contrast, for the schedules that included the AZD1222 vaccine as the primary series, the heterologous schemes showed superior immunological outcomes compared to the homologous 3-dose AZD1222 regimen. For these schemes no differences were observed in the immune response obtained when SW-Vac 2µg or SD-Vac 2µg were used as a booster dose. Neutralizing antibody levels against Omicron BA.1 were low, especially for the schedules using AZD1222. However, a robust Th1 profile, known to be crucial for protection, was observed, particularly for the heterologous schemes that included AZD1222. All the tested schedules were capable of inducing populations of CD4 T effector, memory, and follicular helper T lymphocytes. It is important to highlight that all the evaluated schedules demonstrated a satisfactory safety profile and induced multiple immunological markers of protection. Although the levels of these markers were different among the tested schedules, they appear to complement each other in conferring protection against intranasal challenge with Omicron BA.1 in K18-hACE2 mice. In summary, the results highlight the potential of using the S protein (either ancestral Wuhan or Delta variant)-based vaccine formulation as heterologous boosters in the management of COVID-19, particularly for certain commercial vaccines currently in use.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , ChAdOx1 nCoV-19 , Humanos , Animales , Adyuvantes Inmunológicos , Modelos Animales de Enfermedad , ARN Mensajero
11.
Sci Rep ; 13(1): 16498, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37779126

RESUMEN

SARS-CoV-2 subunit vaccines continue to be the focus of intense clinical development worldwide. Protein antigens in these vaccines most commonly consist of the spike ectodomain fused to a heterologous trimerization sequence, designed to mimic the compact, prefusion conformation of the spike on the virus surface. Since 2020, we have produced dozens of such constructs in CHO cells, consisting of spike variants with different mutations fused to different trimerization sequences. This set of constructs displayed notable conformational heterogeneity, with two distinct trimer species consistently detected by analytical size exclusion chromatography. A recent report showed that spike ectodomain fusion constructs can adopt an alternative trimer conformation consisting of loosely associated ectodomain protomers. Here, we applied multiple biophysical and immunological techniques to demonstrate that this alternative conformation is formed to a significant extent by several SARS-CoV-2 variant spike proteins. We have also examined the influence of temperature and pH, which can induce inter-conversion of the two forms. The substantial structural differences between these trimer types may impact their performance as vaccine antigens.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Vacunas contra la COVID-19/genética , Temperatura , Cricetulus , Antígenos , Mutación , Concentración de Iones de Hidrógeno , Anticuerpos Neutralizantes
12.
Front Immunol ; 14: 1223936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809081

RESUMEN

Background: Following SARS-CoV-2 infection a significant proportion of convalescent individuals develop the post-COVID condition (PCC) that is characterized by wide spectrum of symptoms encompassing various organs. Even though the underlying pathophysiology of PCC is not known, detection of viral transcripts and antigens in tissues other than lungs raise the possibility that PCC may be a consequence of aberrant immune response to the viral antigens. To test this hypothesis, we evaluated B cell and antibody responses to the SARS-CoV-2 antigens in PCC patients who experienced mild COVID-19 disease during the pre-vaccination period of COVID-19 pandemic. Methods: The study subjects included unvaccinated male and female subjects who developed PCC or not (No-PCC) after clearing RT-PCR confirmed mild COVID-19 infection. SARS-CoV-2 D614G and omicron RBD specific B cell subsets in peripheral circulation were assessed by flow cytometry. IgG, IgG3 and IgA antibody titers toward RBD, spike and nucleocapsid antigens in the plasma were evaluated by ELISA. Results: The frequency of the B cells specific to D614G-RBD were comparable in convalescent groups with and without PCC in both males and females. Notably, in females with PCC, the anti-D614G RBD specific double negative (IgD-CD27-) B cells showed significant correlation with the number of symptoms at acute of infection. Anti-spike antibody responses were also higher at 3 months post-infection in females who developed PCC, but not in the male PCC group. On the other hand, the male PCC group also showed consistently high anti-RBD IgG responses compared to all other groups. Conclusions: The antibody responses to the spike protein, but not the anti-RBD B cell responses diverge between convalescent males and females who develop PCC. Our findings also suggest that sex-related factors may also be involved in the development of PCC via modulating antibody responses to the SARS-CoV-2 antigens.


Asunto(s)
COVID-19 , Humanos , Femenino , Masculino , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Formación de Anticuerpos , Pandemias , Inmunoglobulina G
13.
iScience ; 26(9): 107612, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37670783

RESUMEN

Recent publications have explored intranasal (i.n.) adenovirus-based (Ad) vaccines as an effective strategy for SARS-CoV-2 in pre-clinical models. However, the effects of prior immunizations and infections have yet to be considered. Here, we investigate the immunomodulatory effects of Mycobacterium bovis BCG pre-immunization followed by vaccination with an S-protein-expressing i.n. Ad, termed Ad(Spike). While i.n. Ad(Spike) retains some protective effect after 6 months, a single administration of BCG-Danish prior to Ad(Spike) potentiates its ability to control viral replication of the B.1.351 SARS-CoV-2 variant within the respiratory tract. Though BCG-Danish did not affect Ad(Spike)-generated humoral immunity, it promoted the generation of cytotoxic/Th1 responses over suppressive FoxP3+ TREG cells in the lungs of infected mice. Thus, this vaccination strategy may prove useful in limiting future pandemics by potentiating the long-term efficacy of mucosal vaccines within the context of the widely distributed BCG vaccine.

14.
Commun Chem ; 6(1): 189, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684364

RESUMEN

Glycosylation is a key quality attribute that must be closely monitored for protein therapeutics. Established assays such as HILIC-Fld of released glycans and LC-MS of glycopeptides work well for glycoproteins with a few glycosylation sites but are less amenable for those with multiple glycosylation sites, resulting in complex datasets that are time consuming to generate and difficult to analyze. As part of efforts to improve preparedness for future pandemics, researchers are currently assessing where time can be saved in the vaccine development and production process. In this context, we evaluated if neutral and acidic monosaccharides analysis via HPAEC-PAD could be used as a rapid and robust alternative to LC-MS and HILIC-Fld for monitoring glycosylation between protein production batches. Using glycoengineered spike proteins we show that the HPAEC-PAD monosaccharide assays could quickly and reproducibly detect both major and minor glycosylation differences between batches. Moreover, the monosaccharide results aligned well with those obtained by HILIC-Fld and LC-MS.

15.
Commun Med (Lond) ; 3(1): 116, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612423

RESUMEN

BACKGROUND: As the COVID-19 pandemic continues to evolve, novel vaccines need to be developed that are readily manufacturable and provide clinical efficacy against emerging SARS-CoV-2 variants. Virus-like particles (VLPs) presenting the spike antigen at their surface offer remarkable benefits over other vaccine antigen formats; however, current SARS-CoV-2 VLP vaccines candidates in clinical development suffer from challenges including low volumetric productivity, poor spike antigen density, expression platform-driven divergent protein glycosylation and complex upstream/downstream processing requirements. Despite their extensive use for therapeutic protein manufacturing and proven ability to produce enveloped VLPs, Chinese Hamster Ovary (CHO) cells are rarely used for the commercial production of VLP-based vaccines. METHODS: Using CHO cells, we aimed to produce VLPs displaying the full-length SARS-CoV-2 spike. Affinity chromatography was used to capture VLPs released in the culture medium from engineered CHO cells expressing spike. The structure, protein content, and glycosylation of spikes in VLPs were characterized by several biochemical and biophysical methods. In vivo, the generation of neutralizing antibodies and protection against SARS-CoV-2 infection was tested in mouse and hamster models. RESULTS: We demonstrate that spike overexpression in CHO cells is sufficient by itself to generate high VLP titers. These VLPs are evocative of the native virus but with at least three-fold higher spike density. In vivo, purified VLPs elicit strong humoral and cellular immunity at nanogram dose levels which grant protection against SARS-CoV-2 infection. CONCLUSIONS: Our results show that CHO cells are amenable to efficient manufacturing of high titers of a potently immunogenic spike protein-based VLP vaccine antigen.


Virus-like particles (VLPs) have a structure that is similar to viruses but they cannot cause infection or illness. If VLPs are injected into the body they produce an immune response similar to that seen following infection by a virus. This means that VLPs can be used as vaccines against viruses that cause illness in people. Many drugs, named biologics, are manufactured using living cells, including cells that were originally derived from Chinese Hamster Ovaries (CHO cells). We developed a simple method to produce VLPs similar to the SARS-CoV-2 virus in CHO cells. We show that vaccination of rodents with these VLPs prevents them from becoming ill following infection with SARS-CoV-2. These VLPs could become a part of an alternative, easily produced vaccine for the prevention of COVID-19 in humans.

16.
Langmuir ; 39(34): 12235-12247, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37581531

RESUMEN

We compared different biofunctionalization strategies for immobilizing trastuzumab, an IgG targeting the HER2 biomarker, onto 100 nm spherical gold nanoparticles because of the E/K coiled-coil peptide heterodimer. First, Kcoil peptides were grafted onto the gold surface while their Ecoil partners were genetically encoded at the C-terminus of trastuzumab's Fc region, allowing for a strong and specific interaction between the antibodies and the nanoparticles. Gold nanoparticles with no Kcoil peptides on their surface were also produced to immobilize Ecoil-tagged trastuzumab antibodies via the specific adsorption of their negatively charged Ecoil tags on the positively charged gold surface. Finally, the nonspecific adsorption of wild-type trastuzumab on the gold surface was also assessed, with and without Kcoil peptides grafted on it beforehand. We developed a thorough workflow to systematically compare the immobilization strategies regarding the stability of nanoparticles, antibody coverage, and ability to specifically bind to HER2-positive breast cancer cells. All nanoparticles were highly monodisperse and retained their localized surface plasmon resonance properties after biofunctionalization. A significant increase in the amount of immobilized antibodies was observed with the two oriented coil-based strategies compared to nonspecific adsorption. Finally, all biofunctionalization strategies allowed for the detection of HER2-positive breast cancer cells, but among the investigated approaches, we recommend using the E/K coiled-coil-based strategy for gold nanoparticle biofunctionalization because it allows for the qualitative and quantitative detection of HER2-positive cells with a higher contrast compared to HER2-negative cells.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Trastuzumab , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Trastuzumab/química
17.
MAbs ; 15(1): 2218951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37300397

RESUMEN

Long-term delivery is a successful strategy used to reduce the adverse effects of monoclonal antibody (mAb)-based treatments. Macroporous hydrogels and affinity-based strategies have shown promising results in sustained and localized delivery of the mAbs. Among the potential tools for affinity-based delivery systems, the de novo designed Ecoil and Kcoil peptides are engineered to form a high-affinity, heterodimeric coiled-coil complex under physiological conditions. In this study, we created a set of trastuzumab molecules tagged with various Ecoil peptides and evaluated their manufacturability and characteristics. Our data show that addition of an Ecoil tag at the C-termini of the antibody chains (light chains, heavy chains, or both) does not hinder the production of chimeric trastuzumab in CHO cells or affect antibody binding to its antigen. We also evaluated the influence of the number, length, and position of the Ecoil tags on the capture and release of Ecoil-tagged trastuzumab from macroporous dextran hydrogels functionalized with Kcoil peptide (the Ecoil peptide-binding partner). Notably, our data show that antibodies are released from the macroporous hydrogels in a biphasic manner; the first phase corresponding to the rapid release of residual, unbound trastuzumab from the macropores, followed by the affinity-controlled, slow-rate release of antibodies from the Kcoil-functionalized macropore surface.


Asunto(s)
Anticuerpos Monoclonales , Dextranos , Animales , Cricetinae , Hidrogeles/química , Cricetulus , Péptidos/química , Trastuzumab/química
18.
Front Immunol ; 14: 1182556, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122746

RESUMEN

Liposomes composed of sulfated lactosyl archaeol (SLA) have been shown to be a safe and effective vaccine adjuvant with a multitude of antigens in preclinical studies. In particular, SLA-adjuvanted SARS-CoV-2 subunit vaccines based on trimeric spike protein antigens were shown to be immunogenic and efficacious in mice and hamsters. With the continued emergence of SARS-CoV-2 variants, we sought to evaluate next-generation vaccine formulations with an updated antigenic identity. This was of particular interest for the widespread Omicron variant, given the abundance of mutations and structural changes observed within its spike protein compared to other variants. An updated version of our resistin-trimerized SmT1 corresponding to the B.1.1.529 variant was successfully generated in our Chinese Hamster Ovary (CHO) cell-based antigen production platform and characterized, revealing some differences in protein profile and ACE2 binding affinity as compared to reference strain-based SmT1. We next evaluated this Omicron-based spike antigen for its immunogenicity and ability to generate robust antigen-specific immune responses when paired with SLA liposomes or AddaS03 (a mimetic of the AS03 oil-in-water emulsion adjuvant system found in commercialized SARS-CoV-2 protein vaccines). Immunization of mice with vaccine formulations containing this updated antigen with either adjuvant stimulated neutralizing antibody responses favouring Omicron over the reference strain. Cell-mediated responses, which play an important role in the neutralization of intracellular infections, were induced to a much higher degree with the SLA adjuvant relative to the AddaS03-adjuvanted formulations. As such, updated vaccines that are better capable of targeting towards SARS-CoV-2 variants can be generated through an optimized combination of antigen and adjuvant components.


Asunto(s)
Adyuvantes de Vacunas , COVID-19 , Cricetinae , Animales , Ratones , SARS-CoV-2 , Glucolípidos , Sulfatos , Células CHO , Liposomas , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , Cricetulus , Inmunidad Celular , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Archaea , Vacunas contra la COVID-19
19.
Biotechnol Bioeng ; 120(10): 2840-2852, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37232536

RESUMEN

More than half of licensed therapeutic recombinant proteins (r-proteins) are manufactured using constitutively-expressing, stably-transfected Chinese hamster ovary (CHO) clones. While constitutive CHO expression systems have proven their efficacy for the manufacturing of monoclonal antibodies, many next-generation therapeutics such as cytokines and bispecific antibodies as well as biological targets such as ectodomains of transmembrane receptors remain intrinsically challenging to produce. Herein, we exploited a cumate-inducible CHO platform allowing reduced expression of various classes of r-proteins during selection of stable pools. Following stable pool generation, fed-batch productions showed that pools generated without cumate (OFF-pools) were significantly more productive than pools selected in the presence of cumate (ON-pools) for 8 out of the 10 r-proteins tested, including cytokines, G-protein coupled receptors (GPCRs), the HVEM membrane receptor ectodomain, the multifunctional protein High Mobility Group protein B1 (HMGB1), as well as monoclonal and bispecific T-cell engager antibodies. We showed that OFF-pools contain a significantly larger proportion of cells producing high levels of r-proteins and that these cells tend to proliferate faster when expression is turned off, suggesting that r-protein overexpression imposes a metabolic burden on the cells. Cell viability was lower and pool recovery was delayed during selection of ON-pools (mimicking constitutive expression), suggesting that high producers were likely lost or overgrown by faster-growing, low-producing cells. We also observed a correlation between the expression levels of the GPCRs with Binding immunoglobulin Protein, an endoplasmic reticulum (ER) stress marker. Taken together, these data suggest that using an inducible system to minimize r-protein expression during stable CHO pool selection reduces cellular stresses, including ER stress and metabolic burden, leading to pools with greater frequency of high-expressing cells, resulting in improved volumetric productivity.


Asunto(s)
Anticuerpos Monoclonales , Citocinas , Cricetinae , Animales , Cricetulus , Células CHO , Proteínas Recombinantes/metabolismo
20.
Biotechnol Bioeng ; 120(7): 1746-1761, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36987713

RESUMEN

Protein expression from stably transfected Chinese hamster ovary (CHO) clones is an established but time-consuming method for manufacturing therapeutic recombinant proteins. The use of faster, alternative approaches, such as non-clonal stable pools, has been restricted due to lower productivity and longstanding regulatory guidelines. Recently, the performance of stable pools has improved dramatically, making them a viable option for quickly producing drug substance for GLP-toxicology and early-phase clinical trials in scenarios such as pandemics that demand rapid production timelines. Compared to stable CHO clones which can take several months to generate and characterize, stable pool development can be completed in only a few weeks. Here, we compared the productivity and product quality of trimeric SARS-CoV-2 spike protein ectodomains produced from stable CHO pools or clones. Using a set of biophysical and biochemical assays we show that product quality is very similar and that CHO pools demonstrate sufficient productivity to generate vaccine candidates for early clinical trials. Based on these data, we propose that regulatory guidelines should be updated to permit production of early clinical trial material from CHO pools to enable more rapid and cost-effective clinical evaluation of potentially life-saving vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Cricetulus , SARS-CoV-2/metabolismo , Células CHO , Anticuerpos Monoclonales , Vacunas contra la COVID-19/genética , COVID-19/prevención & control , Proteínas Recombinantes/metabolismo , Vacunas de Subunidad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA