Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Clin Invest ; 134(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38941297

RESUMEN

STING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured. Ex vivo flow cytometry profiling during the therapeutic window demonstrated increases in myeloid tumor trafficking and activation, alongside enhancement of CD8+ T cell and NK effector responses. Treatment with 8803 reprogrammed microglia to express costimulatory CD80/CD86 and iNOS, while decreasing immunosuppressive CD206 and arginase. In humanized mice, where tumor cell STING is epigenetically silenced, 8803 therapeutic activity was maintained, further attesting to myeloid dependency and reprogramming. Although the combination with a STAT3 inhibitor did not further enhance STING agonist activity, the addition of anti-PD-1 antibodies to 8803 treatment enhanced survival in an immune checkpoint blockade-responsive glioma model. In summary, 8803 as a monotherapy demonstrates marked in vivo therapeutic activity, meriting consideration for clinical translation.


Asunto(s)
Glioblastoma , Proteínas de la Membrana , Microambiente Tumoral , Animales , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Microambiente Tumoral/inmunología , Ratones , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/agonistas , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética
3.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226622

RESUMEN

Immunometabolism is a burgeoning field of research that investigates how immune cells harness nutrients to drive their growth and functions. Myeloid cells play a pivotal role in tumor biology, yet their metabolic influence on tumor growth and antitumor immune responses remains inadequately understood. This Review explores the metabolic landscape of tumor-associated macrophages, including the immunoregulatory roles of glucose, fatty acids, glutamine, and arginine, alongside the tools used to perturb their metabolism to promote antitumor immunity. The confounding role of metabolic inhibitors on our interpretation of myeloid metabolic phenotypes will also be discussed. A binary metabolic schema is currently used to describe macrophage immunological phenotypes, characterizing inflammatory M1 phenotypes, as supported by glycolysis, and immunosuppressive M2 phenotypes, as supported by oxidative phosphorylation. However, this classification likely underestimates the variety of states in vivo. Understanding these nuances will be critical when developing interventional metabolic strategies. Future research should focus on refining drug specificity and targeted delivery methods to maximize therapeutic efficacy.


Asunto(s)
Macrófagos , Neoplasias , Humanos , Macrófagos/metabolismo , Fosforilación Oxidativa , Células Mieloides , Inmunoterapia , Neoplasias/terapia , Neoplasias/metabolismo
4.
Cancers (Basel) ; 15(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37509400

RESUMEN

Cytokines play an important role in regulating the immune response. Although there is great interest in exploiting cytokines for cancer immunotherapy, their clinical potential is limited by their pleiotropic properties and instability. A variety of cancer cell-intrinsic and extrinsic characteristics pose a barrier to effective treatments including cytokines. Recent studies using gene and cell therapy offer new opportunities for targeting cytokines or their receptors, demonstrating that they are actionable targets. Current efforts such as virotherapy, systemic cytokine therapy, and cellular and gene therapy have provided novel strategies that incorporate cytokines as potential therapeutic strategies for glioblastoma. Ongoing research on characterizing the tumor microenvironment will be informative for prioritization and combinatorial strategies of cytokines for future clinical trials. Unique therapeutic opportunities exist at the convergence of cytokines that play a dual role in tumorigenesis and immune modulation. Here, we discuss the underlying strategies in pre- and clinical trials aiming to enhance treatment outcomes in glioblastoma patients.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32190845

RESUMEN

Glioblastoma (GBM) is the most common and aggressive form of malignant glioma in adults with a median overall survival (OS) time of 16-18 months and a median age of diagnosis at 64 years old. Recent work has suggested that depression and psychosocial distress are associated with worse outcomes in patients with GBM. We therefore hypothesized that the targeted neutralization of psychosocial distress with selective serotonin reuptake inhibitor (SSRI) antidepressant treatment would be associated with a longer OS among patients with GBM. To address this hypothesis, we retrospectively studied the association between adjuvant SSRI usage and OS in GBM patients treated by Northwestern Medicine-affiliated providers. The medical records of 497 GBM patients were analyzed after extraction from the Northwestern Medicine Enterprise Data Warehouse. Data were retrospectively studied using a multivariable Cox model with SSRI use defined as a time-dependent variable for estimating the association with OS. Of the 497 patients, 315 individuals died, while 182 were censored due to the loss of follow-up or were alive at the end of our study. Of the 497 patients, 151 had a recorded use of SSRI treatment during the disease course. Unexpectedly, SSRI usage was not associated with an OS effect in both naïve (HR = 0.81, 95% CI = 0.64-1.03) and adjusted time-dependent (HR = 1.26, 95% CI = 0.97-1.63) Cox models. Ultimately, we failed to find an association between SSRI treatment and an improved OS of patients with GBM. Additional work is necessary for understanding the potential therapeutic effects of SSRIs when combined with other treatment approaches, and immunotherapies in particular, for subjects with GBM.

6.
Methods Enzymol ; 629: 235-256, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31727243

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first and rate-limiting reaction of l-tryptophan (Trp) conversion into l-kynurenine (Kyn). The depletion of Trp, and the accumulation of Kyn have been proposed as mechanisms that contribute to the suppression of the immune response-primarily evidenced by in vitro study. IDO1 is therefore considered to be an immunosuppressive modulator and quantification of IDO1 metabolism may be critical to understanding its role in select immunopathologies, including autoimmune- and oncological-conditions, as well as for determining the potency of IDO1 enzyme inhibitors. Because tryptophan 2,3-dioxygenase (TDO), and to a significantly lesser extent, IDO2, also catabolize Trp into Kyn, it's important to differentiate the contribution of each enzyme to Trp catabolism and Kyn generation. Moreover, a great variety of detection methods have been developed for the quantification of Trp metabolites, but choosing the suitable protocol remains challenging. Here, we review the differential expression of IDO1/TDO/IDO2 in normal and malignant tissues, followed by a comprehensive analysis of methodologies for quantifying Trp and Kyn in vitro and in vivo, with an emphasis on the advantages/disadvantages for each application.


Asunto(s)
Pruebas de Enzimas/métodos , Indolamina-Pirrol 2,3,-Dioxigenasa/análisis , Neoplasias/patología , Animales , Pruebas de Enzimas/instrumentación , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/análisis , Quinurenina/metabolismo , Ratones , Triptófano/análisis , Triptófano/metabolismo , Triptófano Oxigenasa/análisis , Triptófano Oxigenasa/metabolismo
7.
Kidney Int ; 96(6): 1346-1358, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31668632

RESUMEN

Iron deficiency, anemia, hyperphosphatemia, and increased fibroblast growth factor 23 (FGF23) are common and interrelated complications of chronic kidney disease (CKD) that are linked to CKD progression, cardiovascular disease and death. Ferric citrate is an oral phosphate binder that decreases dietary phosphate absorption and serum FGF23 concentrations while increasing iron stores and hemoglobin in patients with CKD. Here we compared the effects of ferric citrate administration versus a mineral sufficient control diet using the Col4a3 knockout mouse model of progressive CKD and age-matched wild-type mice. Ferric citrate was given to knockout mice for four weeks beginning at six weeks of age when they had overt CKD, or for six weeks beginning at four weeks of age when they had early CKD. Ten-week-old knockout mice on the control diet showed overt iron deficiency, anemia, hyperphosphatemia, increased serum FGF23, hypertension, decreased kidney function, and left ventricular systolic dysfunction. Ferric citrate rescued iron deficiency and anemia in knockout mice regardless of the timing of treatment initiation. Circulating levels and bone expression of FGF23 were reduced in knockout mice given ferric citrate with more pronounced reductions observed when ferric citrate was initiated in early CKD. Ferric citrate decreased serum phosphate only when it was initiated in early CKD. While ferric citrate mitigated systolic dysfunction in knockout mice regardless of timing of treatment initiation, early initiation of ferric citrate also reduced renal fibrosis and proteinuria, improved kidney function, and prolonged life span. Thus, initiation of ferric citrate treatment early in the course of murine CKD lowered FGF23, slowed CKD progression, improved cardiac function and significantly improved survival.


Asunto(s)
Compuestos Férricos/uso terapéutico , Factores de Crecimiento de Fibroblastos/sangre , Corazón/efectos de los fármacos , Riñón/efectos de los fármacos , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Autoantígenos/genética , Colágeno Tipo IV/genética , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Compuestos Férricos/farmacología , Factor-23 de Crecimiento de Fibroblastos , Ratones , Ratones Noqueados , Insuficiencia Renal Crónica/sangre
8.
Bone Res ; 7: 12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044094

RESUMEN

During chronic kidney disease (CKD), alterations in bone and mineral metabolism include increased production of the hormone fibroblast growth factor 23 (FGF23) that may contribute to cardiovascular mortality. The osteocyte protein dentin matrix protein 1 (DMP1) reduces FGF23 and enhances bone mineralization, but its effects in CKD are unknown. We tested the hypothesis that DMP1 supplementation in CKD would improve bone health, prevent FGF23 elevations and minimize consequent adverse cardiovascular outcomes. We investigated DMP1 regulation and effects in wild-type (WT) mice and the Col4a3-/- mouse model of CKD. Col4a3-/- mice demonstrated impaired kidney function, reduced bone DMP1 expression, reduced bone mass, altered osteocyte morphology and connectivity, increased osteocyte apoptosis, increased serum FGF23, hyperphosphatemia, left ventricular hypertrophy (LVH), and reduced survival. Genetic or pharmacological supplementation of DMP1 in Col4a3-/- mice prevented osteocyte apoptosis, preserved osteocyte networks, corrected bone mass, partially lowered FGF23 levels by attenuating NFAT-induced FGF23 transcription, and further increased serum phosphate. Despite impaired kidney function and worsened hyperphosphatemia, DMP1 prevented development of LVH and improved Col4a3-/- survival. Our data suggest that CKD reduces DMP1 expression, whereas its restoration represents a potential therapeutic approach to lower FGF23 and improve bone and cardiac health in CKD.

9.
Nephrol Dial Transplant ; 33(7): 1129-1137, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309658

RESUMEN

Background: Levels of fibroblast growth factor 23 (FGF23) increase early in chronic kidney disease (CKD) and are independently associated with left ventricular hypertrophy (LVH), heart failure and death. Experimental models of CKD with elevated FGF23 and LVH are needed. We hypothesized that slow rates of CKD progression in the Col4a3 knockout (Col4a3KO) mouse model of CKD would promote development of LVH by prolonging exposure to elevated FGF23. Methods: We studied congenic Col4a3KO and wild-type (WT) mice with either 75% 129X1/SvJ (129Sv) or 94% C57Bl6/J (B6) genomes. Results: B6-Col4a3KO lived longer than 129Sv-Col4a3KO mice (21.4 ± 0.6 versus 11.4 ± 0.4 weeks; P < 0.05). 10-week-old 129Sv-Col4a3KO mice showed impaired renal function (blood urea nitrogen 191 ± 39 versus 34 ± 4 mg/dL), hyperphosphatemia (14.1 ± 1.4 versus 6.8 ± 0.3 mg/dL) and 33-fold higher serum FGF23 levels (P < 0.05 versus WT for each). Consistent with their slower CKD progression, 10 week-old B6-Col4a3KO mice showed milder impairment of renal function than 129Sv-Col4a3KO mice and modest FGF23 elevation without other alterations of mineral metabolism. At 20 weeks, further declines in renal function in B6-Col4a3KO mice was accompanied by hyperphosphatemia and 8-fold higher FGF23 levels (P < 0.05 versus WT for each). Only the 20-week-old B6-Col4a3KO mice developed LVH (LV mass 125 ± 3 versus 98 ± 6 mg; P < 0.05 versus WT) in association with significantly increased cardiac expression of FGF receptor 4 (FGFR4) messenger RNA and protein and markers of LVH (Atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), beta-myosin heavy chain (ß-MHC); P < 0.05 versus WT for each). Conclusions: In conclusion, B6-Col4a3KO mice manifest slower CKD progression and longer survival than 129Sv-Col4a3KO mice and can serve as a novel model of cardiorenal disease.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Hipertrofia Ventricular Izquierda/genética , Insuficiencia Renal Crónica/genética , Animales , Biomarcadores/metabolismo , Progresión de la Enfermedad , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA