Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Food Chem ; 448: 139072, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547702

RESUMEN

An increase in the consumption of carbohydrate-rich cereals over past few decades has led to increased metabolic disorders in population. This nutritional imbalance in diets may be corrected by substituting cereal grains with pseudocereals that are richer in high-quality proteins, dietary fibers, unsaturated fats, and bioactive compounds (e.g., polyphenols and phytosterols) as compared to cereal grains. These nutrients have been associated with numerous health benefits, such as hypolipidemic, anti-inflammatory, anti-hypertensive, anti-cancer, and hepatoprotective properties, and benefits against obesity and diabetes. In this review, the nutritional composition and health benefits of quinoa, amaranth, and buckwheat are compared against wheat, maize, and rice. Subsequently, the processing treatments applied to quinoa, amaranth, and buckwheat and their applications into food products are discussed. This is relevant since there is substantial market potential for both pseudocereals and functional foods formulated with pseudocereals. Despite clear benefits, the current progress is slowed down by the fact that the cultivation of these pseudocereals is limited to its native regions. Therefore, to meet the global needs, it is imperative to support worldwide cultivation of these nutrient-rich pseudocereals.

2.
Bioresour Technol ; 385: 129420, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37399953

RESUMEN

Coconut coir waste is a rich lignocellulosic biomass. The coconut coir waste generated from temples is resistant to natural degradation, and its accumulation causes environmental pollution. Ferulic acid, a vanillin precursor, was extracted from the coconut coir waste by hydro-distillation extraction. The extracted ferulic acid was used for vanillin synthesis by Bacillus aryabhattai NCIM 5503 under submerged fermentation. In the present study, the Taguchi DOE (design of experiment) software was used to optimize the fermentation process, which resulted in a 1.3 fold increase in vanillin yield (640.96 ± 0.02 mg/L), as compared to the unoptimized yield of 495.96 ± 0.01 mg/L. The optimized media for enhanced vanillin production comprised; fructose 0.75 % (w/v), beef extract 1 % (w/v), pH 9, temperature 30℃, agitation speed 100 rpm, trace metal solution 1 % (v/v), and ferulic acid 2 % (v/v). The results show that the commercial production of vanillin can be envisioned using coconut coir waste.


Asunto(s)
Bacillus , Lignina , Lignina/metabolismo , Bacillus/metabolismo , Benzaldehídos/metabolismo
3.
Front Bioeng Biotechnol ; 11: 1139611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37449089

RESUMEN

Pullulanases are the most important industrial group of enzymes in family 13 glycosyl hydrolases. They hydrolyze either α-1,6 and α-1,4 or both glycosidic bonds in pullulan as well as other carbohydrates to produce glucose, maltose, and maltotriose syrups, which have important uses in food and other related sectors. However, very less reports are available on pullulanase production from native strains because of low yield issues. In line with the increasing demands for pullulanase, it has become important to search for novel pullulanase-producing microorganisms with high yields. Moreover, high production costs and low yield are major limitations in the industrial production of pullulanase enzymes. The production cost of pullulanase by using the solid-state fermentation (SSF) process can be minimized by selecting agro-industrial waste. This review summarizes the types, sources, production strategies, and potential applications of pullulanase in different food and other related industries. Researchers should focus on fungal strains producing pullulanase for better yield and low production costs by using agro-waste. It will prove a better enzyme in different food processing industries and will surely reduce the cost of products.

4.
Food Res Int ; 168: 112777, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120224

RESUMEN

Sustainability, human health, and animal welfare are three broad areas that pose a greater impact on mankind. The increased consumption of animal-based foods such as fish or seafood has threatened the ecosystem due to rising greenhouse gas emissions, biodiversity loss, diseases, and consumption of toxic metals contained in fish by cause of water pollution. This has led to increased awareness among consumers to adopt seafood alternatives for a sustainable future. It is also not well known whether consumers are ready to switch from traditional seafood towards a safer and sustainable seafood alternative. This encourages the in-depth study of the scope of seafood alternatives in consumers' food choices. This study also highlights the nutritional perspectives and technologies involved in the development of seafood alternatives along with the future outlook for a greener planet.


Asunto(s)
Comportamiento del Consumidor , Alimentos Marinos , Humanos , Animales , Ecosistema , Preferencias Alimentarias , Tecnología
5.
Bioresour Technol ; 326: 124735, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33508643

RESUMEN

Bio-plastics are eco-friendly biopolymers finding tremendous application in the food and pharmaceutical industries. Bio-plastics have suitable physicochemical, mechanical properties, and do not cause any type of hazardous pollution upon disposal but have a high production cost. This can be minimized by screening potential bio-polymers producing strains, selecting inexpensive raw material, optimized cultivation conditions, and upstream processing. These bio-plastics specifically microbial-produced bio-polymers such as polyhydroxyalkanoates (PHAs) find application in food industries as packaging material owing to their desirable water barrier and gas permeability properties. The present review deals with the production, recovery, purification, characterization, and applications of PHAs. This is a comprehensive first review will also focus on different strategies adopted for efficient PHA production using dairy processing waste, its biosynthetic mechanism, metabolic engineering, kinetic aspects, and also biodegradability testing at the lab and pilot plant level. In addition to that, the authors will be emphasizing more on novel PHAs nanocomposites synthesis strategies and their commercial applicability.


Asunto(s)
Polihidroxialcanoatos , Biopolímeros , Contaminación Ambiental , Ingeniería Metabólica , Plásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA