Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 196: 262-267, 2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29455077

RESUMEN

Adsorption or immobilization of proteins on synthetic surfaces is a key issue in the context of the biocompatibility of implant materials, especially those intended for the needs of cardiac surgery but also for the construction of biosensors or nanomaterials used as drug carriers. The subject of research was the analysis of Raman spectra of two types of fibrous carbon nanomaterials, of great potential for biomedical applications, incubated with human serum albumin (HSA). The first nanomaterial has been created on the layer of MWCNTs deposited by electrophoretic method (EPD) and then covered by thin film of pyrolytic carbon introduced by chemical vapor deposition process (CVD). The second material was formed from carbonized nanofibers prepared via electrospinning (ESCNFs) of polyacrylonitrile (PAN) precursor and then covered with pyrolytic carbon (CVD). The G-band blue-shift towards the position of about 1600cm-1, observed for both studied surfaces, clearly indicates the albumin (HSA) adhesion to the surface. The G and G' (2D) peak shift was employed to assess the stress build up on the carbon nanomaterials. The surface nano- and micro-topography as well as the method of ordering the carbon nanomaterial has a significant influence on the mode of surface-protein interaction.


Asunto(s)
Albúminas/química , Albúminas/metabolismo , Carbono/química , Carbono/metabolismo , Nanotubos de Carbono/química , Espectrometría Raman/métodos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA