Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Interact J Med Res ; 13: e44492, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39378428

RESUMEN

BACKGROUND: The Delta variant (B.1.617.2) was considered the most dangerous SARS-CoV-2 strain; however, in-depth studies on its impact based on demographic and clinical characteristics of COVID-19 are scarce. OBJECTIVE: We aimed to investigate the shift in demographic and clinical characteristics of the COVID-19 pandemic with the emergence of the SARS-CoV-2 Delta variant compared with the wild-type (WT) strain (B.1). METHODS: A cross-sectional study of COVID-19 cases in the Indian population caused by the WT strain (B.1) and Delta variant of SARS-CoV-2 was performed. The viral genomic sequence metadata containing demographic, vaccination, and patient status details (N=9500, NDelta=6238, NWT=3262) were statistically analyzed. RESULTS: With the Delta variant, in comparison with the WT strain, a higher proportion of young individuals (<20 years) were infected (0-9 years: Delta: 281/6238, 4.5% vs B.1: 75/3262, 2.3%; 10-19 years: Delta: 562/6238, 9% vs B.1: 229/3262, 7%; P<.001). The proportion of women contracting infection increased (Delta: 2557/6238, 41% vs B.1: 1174/3262, 36%; P<.001). However, it decreased for men (Delta: 3681/6238, 59% vs B.1: 2088/3262, 64%; P<.001). An increased proportion of the young population developed symptomatic illness and were hospitalized (Delta: 27/262, 10.3% vs B.1: 5/130, 3.8%; P=.02). Moreover, an increased proportion of the women (albeit not men) from the young (Delta: 37/262, 14.1% vs B.1: 4/130, 3.1%; P<.001) and adult (Delta: 197/262, 75.2% vs B.1: 72/130, 55.4%; P<.001) groups developed symptomatic illness and were hospitalized. The mean age of men and women who contracted infection (Delta: men=37.9, SD 17.2 years; women=36.6, SD 17.6 years; P<.001; B.1: men=39.6, SD 16.9 years; women=40.1, SD 17.4 years; P<.001) as well as developing symptoms or being hospitalized (Delta: men=39.6, SD 17.4 years; women=35.6, SD 16.9 years, P<.001; B.1: men=47, SD 18 years; women=49.5, SD 20.9 years, P<.001) were considerably lower with the Delta variant than the B.1 strain. The total mortality was about 1.8 times higher with the Delta variant than with the WT strain. With the Delta variant, compared with B.1, mortality decreased for men (Delta: 58/85, 68% vs B.1: 15/20, 75%; P<.001); in contrast, it increased for women (Delta: 27/85, 32% vs B.1: 5/20, 25%; P<.001). The odds of death increased with age, irrespective of sex (odds ratio 3.034, 95% CI 1.7-5.2, P<.001). Frequent postvaccination infections (24/6238) occurred with the Delta variant following complete doses. CONCLUSIONS: The increased involvement of young people and women, the lower mean age for illness, higher mortality, and frequent postvaccination infections were significant epidemiological concerns with the Delta variant.

2.
JMIR Bioinform Biotech ; 4: e42700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36688013

RESUMEN

Background: Emergence of the new SARS-CoV-2 variant B.1.1.529 worried health policy makers worldwide due to a large number of mutations in its genomic sequence, especially in the spike protein region. The World Health Organization (WHO) designated this variant as a global variant of concern (VOC), which was named "Omicron." Following Omicron's emergence, a surge of new COVID-19 cases was reported globally, primarily in South Africa. Objective: The aim of this study was to understand whether Omicron had an epidemiological advantage over existing variants. Methods: We performed an in silico analysis of the complete genomic sequences of Omicron available on the Global Initiative on Sharing Avian Influenza Data (GISAID) database to analyze the functional impact of the mutations present in this variant on virus-host interactions in terms of viral transmissibility, virulence/lethality, and immune escape. In addition, we performed a correlation analysis of the relative proportion of the genomic sequences of specific SARS-CoV-2 variants (in the period from October 1 to November 29, 2021) with matched epidemiological data (new COVID-19 cases and deaths) from South Africa. Results: Compared with the current list of global VOCs/variants of interest (VOIs), as per the WHO, Omicron bears more sequence variation, specifically in the spike protein and host receptor-binding motif (RBM). Omicron showed the closest nucleotide and protein sequence homology with the Alpha variant for the complete sequence and the RBM. The mutations were found to be primarily condensed in the spike region (n=28-48) of the virus. Further mutational analysis showed enrichment for the mutations decreasing binding affinity to angiotensin-converting enzyme 2 receptor and receptor-binding domain protein expression, and for increasing the propensity of immune escape. An inverse correlation of Omicron with the Delta variant was noted (r=-0.99, P<.001; 95% CI -0.99 to -0.97) in the sequences reported from South Africa postemergence of the new variant, subsequently showing a decrease. There was a steep rise in new COVID-19 cases in parallel with the increase in the proportion of Omicron isolates since the report of the first case (74%-100%). By contrast, the incidence of new deaths did not increase (r=-0.04, P>.05; 95% CI -0.52 to 0.58). Conclusions: In silico analysis of viral genomic sequences suggests that the Omicron variant has more remarkable immune-escape ability than existing VOCs/VOIs, including Delta, but reduced virulence/lethality than other reported variants. The higher power for immune escape for Omicron was a likely reason for the resurgence in COVID-19 cases and its rapid rise as the globally dominant strain. Being more infectious but less lethal than the existing variants, Omicron could have plausibly led to widespread unnoticed new, repeated, and vaccine breakthrough infections, raising the population-level immunity barrier against the emergence of new lethal variants. The Omicron variant could have thus paved the way for the end of the pandemic.

3.
JMIR Bioinform Biotech ; 3(1): e36860, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36193192

RESUMEN

Background: Since the start of the COVID-19 pandemic, health policymakers globally have been attempting to predict an impending wave of COVID-19. India experienced a devastating second wave of COVID-19 in the late first week of May 2021. We retrospectively analyzed the viral genomic sequences and epidemiological data reflecting the emergence and spread of the second wave of COVID-19 in India to construct a prediction model. Objective: We aimed to develop a bioinformatics tool that can predict an impending COVID-19 wave. Methods: We analyzed the time series distribution of genomic sequence data for SARS-CoV-2 and correlated it with epidemiological data for new cases and deaths for the corresponding period of the second wave. In addition, we analyzed the phylodynamics of circulating SARS-CoV-2 variants in the Indian population during the study period. Results: Our prediction analysis showed that the first signs of the arrival of the second wave could be seen by the end of January 2021, about 2 months before its peak in May 2021. By the end of March 2021, it was distinct. B.1.617 lineage variants powered the wave, most notably B.1.617.2 (Delta variant). Conclusions: Based on the observations of this study, we propose that genomic surveillance of SARS-CoV-2 variants, complemented with epidemiological data, can be a promising tool to predict impending COVID-19 waves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA