Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Biol ; 22(1): 84, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610043

RESUMEN

BACKGROUND: Post-translational transport is a vital process which ensures that each protein reaches its site of function. Though most do so via an ordered ER-to-Golgi route, an increasing number of proteins are now shown to bypass this conventional secretory pathway. RESULTS: In the Drosophila olfactory sensory neurons (OSNs), odorant receptors (ORs) are trafficked from the ER towards the cilia. Here, we show that Or22a, a receptor of various esters and alcoholic compounds, reaches the cilia partially through unconventional means. Or22a frequently present as puncta at the somatic cell body exit and within the dendrite prior to the cilia base. These rarely coincide with markers of either the intermediary ER-Golgi-intermediate-compartment (ERGIC) or Golgi structures. ERGIC and Golgi also displayed axonal localization biases, a further indication that at least some measure of OR transport may occur independently of their involvement. Additionally, neither the loss of several COPII genes involved in anterograde trafficking nor ERGIC itself affected puncta formation or Or22a transport to the cilium. Instead, we observed the consistent colocalization of Or22a puncta with Grasp65, the sole Drosophila homolog of mammalian GRASP55/Grh1, a marker of the unconventional pathway. The numbers of both Or22a and Grasp65-positive puncta were furthermore increased upon nutritional starvation, a condition known to enhance Golgi-bypassing secretory activity. CONCLUSIONS: Our results demonstrate an alternative route of Or22a transport, thus expanding the repertoire of unconventional secretion mechanisms in neurons.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Receptores Odorantes/genética , Vías Secretoras , Drosophila , Cilios , Mamíferos
2.
Nat Commun ; 13(1): 7810, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36535958

RESUMEN

Dietary composition affects food preference in animals. High sugar intake suppresses sweet sensation from insects to humans, but the molecular basis of this suppression is largely unknown. Here, we reveal that sugar intake in Drosophila induces the gut to express and secrete Hedgehog (Hh) into the circulation. We show that the midgut secreted Hh localize to taste sensilla and suppresses sweet sensation, perception, and preference. We further find that the midgut Hh inhibits Hh signalling in the sweet taste neurons. Our electrophysiology studies demonstrate that the midgut Hh signal also suppresses bitter taste and some odour responses, affecting overall food perception and preference. We further show that the level of sugar intake during a critical window early in life, sets the adult gut Hh expression and sugar perception. Our results together reveal a bottom-up feedback mechanism involving a "gut-taste neuron axis" that regulates food sensation and preference.


Asunto(s)
Drosophila melanogaster , Proteínas Hedgehog , Neuronas , Gusto , Animales , Drosophila melanogaster/fisiología , Preferencias Alimentarias , Proteínas Hedgehog/metabolismo , Neuronas/fisiología , Azúcares/metabolismo , Gusto/fisiología , Proteínas de Drosophila/metabolismo
3.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36264221

RESUMEN

The evolutionarily conserved Glycogen Synthase Kinase 3ß (GSK3ß), a negative regulator of microtubules, is crucial for neuronal polarization, growth and migration during animal development. However, it remains unknown whether GSK3ß regulates neuronal pruning, which is a regressive process. Here, we report that the Drosophila GSK3ß homologue Shaggy (Sgg) is cell-autonomously required for dendrite pruning of ddaC sensory neurons during metamorphosis. Sgg is necessary and sufficient to promote microtubule depolymerization, turnover and disassembly in the dendrites. Although Sgg is not required for the minus-end-out microtubule orientation in dendrites, hyperactivated Sgg can disturb the dendritic microtubule orientation. Moreover, our pharmacological and genetic data suggest that Sgg is required to promote dendrite pruning at least partly via microtubule disassembly. We show that Sgg and Par-1 kinases act synergistically to promote microtubule disassembly and dendrite pruning. Thus, Sgg and Par-1 might converge on and phosphorylate a common downstream microtubule-associated protein(s) to disassemble microtubules and thereby facilitate dendrite pruning.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Dendritas/genética , Células Receptoras Sensoriales , Microtúbulos , Plasticidad Neuronal/genética , Drosophila melanogaster/genética
4.
Exp Cell Res ; 385(2): 111688, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31678212

RESUMEN

CTPsyn is a crucial metabolic enzyme which synthesizes CTP nucleotides. It has the extraordinary ability to compartmentalize into filaments termed cytoophidia. Though the structure is evolutionarily conserved across kingdoms, the mechanisms behind their formation remain unknown. MicroRNAs (miRNAs) are short single-stranded RNA capable of directing mRNA silencing and degradation. D. melanogaster has a high total gene count to miRNA gene number ratio, alluding to the possibility that CTPsyn too may come under their regulation. A thorough miRNA overexpression involving 123 miRNAs was conducted, followed by CTPsyn-specific staining upon cytoophidia-rich egg chambers. This revealed a small group of candidates which confer either a lengthening or truncating effect on cytoophidia, suggesting they may play a role in regulating CTPsyn. MiR-975 and miR-1014 are both cytoophidia-elongating, whereas miR-190 and miR-932 are cytoophidia-shortening. Though target prediction shows that miR-975 and miR-932 do indeed have binding sites on CTPsyn mRNA, in vitro assays instead revealed a low probability of this being true, instead indicating that the effects asserted by overexpressed miRNAs indirectly reach CTPsyn and its cytoophidia through the actions of middling elements. In silico target prediction and qPCR quantification indicated that, at least for miR-932 and miR-1014, these undetermined elements may be players in fat metabolism. This is the first study to thoroughly investigate miRNAs in connection to CTPsyn expression and activity in any species. The findings presented could serve as a basis for further queries into not only the fundamental aspects of the enzyme's regulation, but may uncover new facets of closely related pathways as well.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas de Drosophila/metabolismo , MicroARNs/metabolismo , Animales , Ligasas de Carbono-Nitrógeno/genética , Células Cultivadas , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , MicroARNs/genética , Ovario/metabolismo , Multimerización de Proteína
5.
Sci Rep ; 9(1): 6096, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988367

RESUMEN

CTP synthase (CTPSyn) is an essential metabolic enzyme, synthesizing precursors required for nucleotides and phospholipids production. Previous studies have also shown that CTPSyn is elevated in various cancers. In many organisms, CTPSyn compartmentalizes into filaments called cytoophidia. In Drosophila melanogaster, only its isoform C (CTPSynIsoC) forms cytoophidia. In the fruit fly's testis, cytoophidia are normally seen in the transit amplification regions close to its apical tip, where the stem-cell niche is located, and development is at its most rapid. Here, we report that CTPSynIsoC overexpression causes the lengthening of cytoophidia throughout the entirety of the testicular body. A bulging apical tip is found in approximately 34% of males overexpressing CTPSynIsoC. Immunostaining shows that this bulged phenotype is most likely due to increased numbers of both germline cells and spermatocytes. Through a microRNA (miRNA) overexpression screen, we found that ectopic miR-975 concurrently increases both the expression levels of CTPSyn and the length of its cytoophidia. The bulging testes phenotype was also recovered at a penetration of approximately 20%. However, qPCR assays reveal that CTPSynIsoC and miR-975 overexpression each provokes a differential response in expression of a number of cancer-related genes, indicating that the shared CTPSyn upregulation seen in either case is likely the cause of observed testicular overgrowth. This study presents the first instance of consequences of miRNA-asserted regulation upon CTPSyn in D. melanogaster, and further reaffirms the enzyme's close ties to germline cells overgrowth.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Citoesqueleto/metabolismo , Drosophila melanogaster/enzimología , MicroARNs/genética , Espermatocitos/citología , Testículo/citología , Animales , Diferenciación Celular , Proliferación Celular , Proteínas de Drosophila/metabolismo , Isoenzimas/metabolismo , Masculino , Nicho de Células Madre
6.
Biochem Biophys Res Commun ; 505(1): 106-112, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241946

RESUMEN

CTP Synthase (CTPS) is a metabolic enzyme that is recognized as a catalyst for nucleotide, phospholipid and sialoglycoprotein production. Though the structural characteristics and regulatory mechanisms of CTPS are well-understood, little is known regarding the extent of its involvement during the early developmental stages of vertebrates. Zebrafish carries two CTPS genes, annotated as ctps1a and ctps1b. Phylogenetic analyses show that both genes had diverged from homologues in the ancestral Actinopterygii, Oreochromis niloticus. Conservation of common CTPS-catalytic regions further establishes that both proteins are likely to be functionally similar to hsaCTPS. Here, we show that ctps1a is more critical throughout the initial period of embryonic development than ctps1b. The effects of concurrent partial knockdown are dependent on ctps1a vs ctps1b dosage ratios. When these are equally attenuated, abnormal phenotypes acquired prior to the pharyngula period disappear in hatchlings (48hpf); however, if either gene is more attenuated than the other, these only become more pronounced in advanced stages. Generally, disruption to normal ctps1a or ctps1b expression levels by morpholinos culminates in the distortion of the early spinal column as well as multiple-tissue oedema. Other effects include slower growth rates, increased mortality rates and impaired structural formation of the young fish's extremities. Embryos grown in DON, a glutamine-analogue drug and CTPS antagonist, also exhibit similar characteristics, thus strengthening the validity of the morpholino-induced phenotypes observed. Together, our results demonstrate the importance of CTPS for the development of zebrafish embryos, as well as a disparity in activity and overall importance amongst isozymes.


Asunto(s)
Líquidos Corporales/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Regulación del Desarrollo de la Expresión Génica , Columna Vertebral/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Ligasas de Carbono-Nitrógeno/clasificación , Ligasas de Carbono-Nitrógeno/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Filogenia , Homología de Secuencia de Aminoácido , Columna Vertebral/embriología , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
7.
PLoS One ; 13(3): e0194664, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29554153

RESUMEN

Members of the Aedes genus of mosquitoes are widely recognized as vectors of viral diseases. Ae.albopictus is its most invasive species, and are known to carry viruses such as Dengue, Chikugunya and Zika. Its emerging importance puts Ae.albopictus on the forefront of genetic interaction and evolution studies. However, a panel of suitable reference genes specific for this insect is as of now undescribed. Nine reference genes, namely ACT, eEF1-γ, eIF2α, PP2A, RPL32, RPS17, PGK1, ILK and STK were evaluated. Expression patterns of the candidate reference genes were observed in a total of seventeen sample types, separated by stage of development and age. Gene stability was inferred from obtained quantification data through three widely cited evaluation algorithms i.e. BestKeeper, geNorm, and NormFinder. No single gene showed a satisfactory degree of stability throughout all developmental stages. Therefore, we propose combinations of PGK and ILK for early embryos; RPL32 and RPS17 for late embryos, all four larval instars, and pupae samples; eEF1-γ with STK for adult males; eEF1-γ with RPS17 for non-blood fed females; and eEF1-γ with eIF2α for both blood-fed females and cell culture. The results from this study should be able to provide a more informed selection of normalizing genes during qPCR in Ae.albopictus.


Asunto(s)
Aedes/genética , Genes Esenciales , Genes de Insecto , Estadios del Ciclo de Vida/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Aedes/embriología , Aedes/crecimiento & desarrollo , Aedes/virología , Animales , Virus Chikungunya/genética , Virus del Dengue/genética , Embrión no Mamífero , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Mosquitos Vectores/embriología , Mosquitos Vectores/genética , Mosquitos Vectores/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Estándares de Referencia , Virus Zika/genética
8.
Sci Rep ; 7: 43618, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300076

RESUMEN

The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research.


Asunto(s)
Aedes/genética , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Aedes/embriología , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica , Genes de Insecto , Estadios del Ciclo de Vida , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
9.
BMJ Open ; 6(8): e010689, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27540095

RESUMEN

OBJECTIVE: To determine the prevalence of vitamin D deficiency (<37.5 nmol/L) among young adolescents in Malaysia and its association with demographic characteristics, anthropometric measures and physical activity. DESIGN: This is a cross-sectional study among Form 1 (year 7) students from 15 schools selected using a stratified random sampling design. Information regarding sociodemographic characteristics, clinical data and environmental factors was collected and blood samples were taken for total vitamin D. Descriptive and multivariable logistic regression was performed on the data. SETTING: National secondary schools in Peninsular Malaysia. PARTICIPANTS: 1361 students (mean age 12.9±0.3 years) (61.4% girls) completed the consent forms and participated in this study. Students with a chronic health condition and/or who could not understand the questionnaires due to lack of literacy were excluded. MAIN OUTCOME MEASURES: Vitamin D status was determined through measurement of sera 25-hydroxyvitamin D (25(OH)D). Body mass index (BMI) was classified according to International Obesity Task Force (IOTF) criteria. Self-reported physical activity levels were assessed using the validated Malay version of the Physical Activity Questionnaire for Older Children (PAQ-C). RESULTS: Deficiency in vitamin D was seen in 78.9% of the participants. The deficiency was significantly higher in girls (92.6%, p<0.001), Indian adolescents (88.6%, p<0.001) and urban-living adolescents (88.8%, p<0.001). Females (OR=8.98; 95% CI 6.48 to 12.45), adolescents with wider waist circumference (OR=2.64; 95% CI 1.65 to 4.25) and in urban areas had higher risks (OR=3.57; 95% CI 2.54 to 5.02) of being vitamin D deficient. CONCLUSIONS: The study shows a high prevalence of vitamin D deficiency among young adolescents. Main risk factors are gender, ethnicity, place of residence and obesity.


Asunto(s)
Ejercicio Físico , Obesidad/epidemiología , Deficiencia de Vitamina D/epidemiología , Vitamina D/análogos & derivados , Adolescente , Pueblo Asiatico , Índice de Masa Corporal , Estudios Transversales , Femenino , Humanos , Modelos Logísticos , Estudios Longitudinales , Malasia/epidemiología , Masculino , Prevalencia , Autoinforme , Distribución por Sexo , Factores Sexuales , Vitamina D/sangre
10.
J Genet Genomics ; 43(8): 481-94, 2016 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-27569398

RESUMEN

The discovery of small non-coding RNAs - microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) - represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment.


Asunto(s)
Proteínas Argonautas/metabolismo , ARN Pequeño no Traducido/genética , Animales , Proteínas Argonautas/química , Núcleo Celular/genética , Silenciador del Gen , Humanos , Complejo Silenciador Inducido por ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA