Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Fish Dis ; 47(6): e13938, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462942

RESUMEN

Channel catfish (Ictalurus punctatus) are a food fish extensively reared in aquaculture facilities throughout the world and are also among the most abundant wild catfish species in North America, making them a popular target of anglers. Furthermore, channel catfish are important members of aquatic ecosystems; for example, they serve as a glochidial host for the endangered winged mapleleaf mussel (Quadrula fragosa), making them critical for conserving this species through hatchery-based restoration efforts. During a routine health inspection, a novel aquareovirus was isolated from channel catfish used in mussel propagation efforts at a fish hatchery in Wisconsin. This virus was isolated on brown bullhead cells (ATCC CCL-59) and identified through metagenomic sequencing as a novel member of the family Spinareoviridae, genus Aquareovirus. The virus genome consists of 11 segments, as is typical of the aquareoviruses, with phylogenetic relationships based on RNA-dependent RNA polymerase and major outer capsid protein amino acid sequences showing it to be most closely related to golden shiner virus (aquareovirus C) and aquareovirus C/American grass carp reovirus (aquareovirus G) respectively. The potential of the new virus, which we name genictpun virus 1 (GNIPV-1), to cause disease in channel catfish or other species remains unknown.


Asunto(s)
Enfermedades de los Peces , Genoma Viral , Ictaluridae , Filogenia , Animales , Ictaluridae/virología , Wisconsin , Enfermedades de los Peces/virología , Reoviridae/aislamiento & purificación , Reoviridae/genética , Reoviridae/clasificación , Reoviridae/fisiología , Bivalvos/virología , Acuicultura
2.
Microorganisms ; 11(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37110491

RESUMEN

Recent bacteriological investigations of freshwater mussel mortality events in the southeastern United States have identified a variety of bacteria and differences in bacterial communities between sick and healthy mussels. In particular, Yokenella regensburgei and Aeromonas spp. have been shown to be associated with moribund mussels, although it remains unclear whether these bacteria are causes or consequences of disease. To further understand the role of bacteria in mussel epizootics, we investigated mortality events that occurred in the upper Midwest in the Embarrass River (Wisconsin) and the Huron River (Michigan). For comparison, we also studied mussels from an unaffected population in the St. Croix River (Wisconsin). Diverse bacterial genera were identified from these sites, including Y. regensburgei from moribund mussels in the Embarrass River (Wisconsin). This bacterium has also been consistently isolated during ongoing mortality events in the Clinch River (Virginia). Subsequently, we developed and validated molecular assays for the detection of Yokenella to use in future investigations of mussel mortality events and to identify environmental reservoirs of this bacterium.

3.
J Aquat Anim Health ; 34(2): 92-97, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35527365

RESUMEN

In July of 2018 and 2019, wild fish health surveys were conducted along the Wisconsin and Minnesota portions of the upper Mississippi River. Spring viremia of carp virus (SVCV) was isolated from Common Carp Cyprinus carpio as well as a newly identified host species, the Quillback Carpiodes cyprinus. Sanger sequencing of the gene encoding for the G protein revealed a high similarity of the Quillback isolate to various SVCV isolates identified from Common Carp that were collected during earlier wild fish health surveys and mortality events in the USA. Despite annual monitoring, this virus has been infrequently identified. The speculative role of native fish and invertebrates in allowing the virus to persist for long periods without detection is discussed.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Filogenia , Rhabdoviridae/genética , Infecciones por Rhabdoviridae/diagnóstico , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/veterinaria , Ríos , Viremia/veterinaria
4.
J Fish Dis ; 45(5): 667-677, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35195301

RESUMEN

In November 2018, Vagococcus salmoninarum was identified as the causative agent of a chronic coldwater streptococcosis epizootic in broodstock brook trout (Salvelinus fontinalis) at the Iron River National Fish Hatchery in Wisconsin, USA. By February 2019, the epizootic spread to adjacent raceways containing broodstock lake trout (Salvelinus namaycush), whereby fish were found to be coinfected with Carnobacterium maltaromaticum and V. salmoninarum. To differentiate these two pathogens and determine the primary cause of the lake trout morbidity, a quantitative real-time PCR (qPCR) was developed targeting the C. maltaromaticum phenylalanyl-tRNA synthase alpha subunit (pheS) gene. The qPCR was combined with a V. salmoninarum qPCR, creating a duplex qPCR assay that simultaneously quantitates C. maltaromaticum and V. salmoninarum concentrations in individual lake trout tissues, and screens presumptive isolates from hatchery inspections and wild fish from national fish hatchery source waters throughout the Great Lakes basin. Vagococcus salmoninarum and C. maltaromaticum were co-detected in broodstock brook trout from two tribal hatcheries and C. maltaromaticum was present in wild fish in source waters of several national fish hatcheries. This study provides a powerful new tool to differentiate and diagnose two emerging Gram-positive bacterial pathogens.


Asunto(s)
Enfermedades de los Peces , Animales , Carnobacterium , Enterococcaceae/genética , Enfermedades de los Peces/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA