Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(32): 19026-19032, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32727907

RESUMEN

Liquids typically form droplets when exiting a nozzle. Jets--cylindrical streams of fluid-can form transiently at higher fluid velocities, yet interfacial tension rapidly drives jet breakup into droplets via the Rayleigh-Plateau instability. Liquid metal is an unlikely candidate to form stable jets since it has enormous interfacial tension and low viscosity. We report that electrochemical anodization significantly lowers the effective tension of a stream of metal, transitioning it from droplets to long (long lifetime and length) wires with 100-µm diameters without the need for high velocities. Whereas surface minimization drives Rayleigh-Plateau instabilities, these streams of metal increase in surface area when laid flat upon a surface due to the low tension. The ability to tune interfacial tension over at least three orders of magnitude using modest potential (<1 V) enables new approaches for production of metallic structures at room temperature, on-demand fluid-in-fluid structuring, and new tools for studying and controlling fluid behavior.

2.
Phys Rev Lett ; 119(17): 174502, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29219460

RESUMEN

We identify and characterize a new class of fingering instabilities in liquid metals; these instabilities are unexpected due to the large interfacial tension of metals. Electrochemical oxidation lowers the effective interfacial tension of a gallium-based liquid metal alloy to values approaching zero, thereby inducing drastic shape changes, including the formation of fractals. The measured fractal dimension (D=1.3±0.05) places the instability in a different universality class than other fingering instabilities. By characterizing changes in morphology and dynamics as a function of droplet volume and applied electric potential, we identify the three main forces involved in this process: interfacial tension, gravity, and oxidative stress. Importantly, we find that electrochemical oxidation can generate compressive interfacial forces that oppose the tensile forces at a liquid interface. The surface oxide layer ultimately provides a physical and electrochemical barrier that halts the instabilities at larger positive potentials. Controlling the competition between interfacial tension and oxidative (compressive) stresses at the interface is important for the development of reconfigurable electronic, electromagnetic, and optical devices that take advantage of the metallic properties of liquid metals.

3.
Lab Chip ; 17(7): 1359, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28300262

RESUMEN

Correction for 'Electrowetting without external voltage using paint-on electrodes' by Collin B. Eaker et al., Lab Chip, 2017, DOI: .

4.
Lab Chip ; 17(6): 1069-1075, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28225124

RESUMEN

Electrowetting uses voltage to manipulate small volumes of fluid for applications including lab-on-a-chip and optical devices. To avoid electrochemical reactions, a dielectric often separates the fluid from the electrode, which has the undesired effect of adding processing steps while increasing the voltage necessary for electrowetting. We present a new method to dramatically reduce the complexity of electrode and dielectric fabrication while enabling multiple performance advances. This method relies on a self-oxidizing paint-on liquid-metal electrode that can be fabricated in minutes on rigid, rough, or even elastic substrates, enabling low operation voltages (<1 V), and self-healing upon dielectric breakdown. Furthermore, due to the non-negligible 'potential of zero charge', electrowetting occurs by simply short circuiting the electrodes. This work opens up new application spaces for electrowetting (e.g. stretchable substrates, soft and injectable electrodes) while achieving large changes in contact angle without the need for an external power supply.

5.
J Vis Exp ; (107): e53567, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26863045

RESUMEN

Controlling interfacial tension is an effective method for manipulating the shape, position, and flow of fluids at sub-millimeter length scales, where interfacial tension is a dominant force. A variety of methods exist for controlling the interfacial tension of aqueous and organic liquids on this scale; however, these techniques have limited utility for liquid metals due to their large interfacial tension. Liquid metals can form soft, stretchable, and shape-reconfigurable components in electronic and electromagnetic devices. Although it is possible to manipulate these fluids via mechanical methods (e.g., pumping), electrical methods are easier to miniaturize, control, and implement. However, most electrical techniques have their own constraints: electrowetting-on-dielectric requires large (kV) potentials for modest actuation, electrocapillarity can affect relatively small changes in the interfacial tension, and continuous electrowetting is limited to plugs of the liquid metal in capillaries. Here, we present a method for actuating gallium and gallium-based liquid metal alloys via an electrochemical surface reaction. Controlling the electrochemical potential on the surface of the liquid metal in electrolyte rapidly and reversibly changes the interfacial tension by over two orders of magnitude ( Ì´500 mN/m to near zero). Furthermore, this method requires only a very modest potential (< 1 V) applied relative to a counter electrode. The resulting change in tension is due primarily to the electrochemical deposition of a surface oxide layer, which acts as a surfactant; removal of the oxide increases the interfacial tension, and vice versa. This technique can be applied in a wide variety of electrolytes and is independent of the substrate on which it rests.


Asunto(s)
Aleaciones/química , Técnicas Electroquímicas/métodos , Galio/química , Electrodos , Electrólitos/química , Oxidación-Reducción , Tensión Superficial , Agua/química
6.
Proc Natl Acad Sci U S A ; 111(39): 14047-51, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25228767

RESUMEN

We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼ 500 mJ/m(2) to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides--which are ubiquitous on most metals and semiconductors--are intrinsic "surfactants." The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA