Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39453683

RESUMEN

BACKGROUND AND AIMS: Timely and accurate detection of tumor recurrence in pancreatic ductal adenocarcinoma (PDAC) patients is an urgent and unmet medical need. This study aimed to develop a noninvasive molecular diagnostic procedure for the detection of recurrence after PDAC resection based on quantification of circulating mRNA and miRNA biomarkers in serum samples. METHODS: In a multicentric study, serum samples from a total of 146 patients were prospectively collected after resection. Samples were classified into a "No Evidence of Disease" and a "Recurrence" group based on clinical follow-up data. A multianalyte biomarker panel was composed of mRNAs and miRNA markers and simultaneously analyzed in serum samples using custom microfluidic qPCR arrays (TaqMan array cards). A diagnostic algorithm was developed combining a 7-gene marker signature with CA19-9 data. RESULTS: The best-performing marker combination achieved 90% diagnostic accuracy in predicting the presence of tumor recurrence (98% sensitivity; 84% specificity), clearly outperforming the singular CA 19-9 analysis. Moreover, time series data obtained by analyzing successively collected samples from 5 patients during extended follow-up suggested that molecular diagnosis has the potential to detect recurrence earlier than routine clinical procedures. CONCLUSIONS: TaqMan array card measurements were found to be biologically valid and technically reproducible. The BioPac multianalyte marker panel is capable of sensitive and accurate detection of recurrence in patients resected for PDAC using a simple blood test. This could allow a closer follow-up using shorter time intervals than currently used for imaging, thus potentially prompting an earlier work-up with additional modalities to allow for earlier therapeutic intervention. This study provides a promising approach for improved postoperative monitoring of resected PDAC patients, which is an urgent and unmet clinical need.

2.
Mol Oncol ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245631

RESUMEN

Alpha-smooth muscle actin (α-SMA) expression in the stroma is linked to the presence of cancer-associated fibroblasts and is known to correlate with worse outcomes in various tumors. In this study, using a GeoMx digital spatial profiling approach, we characterized the gene expression of the tumor and α-SMA-expressing stromal cell compartments in pancreatic neuroendocrine tumors (PanNETs). The profiling was performed on tissues from eight retrospective cases (three grade 1, four grade 2, and one grade 3). Selected regions of interest were segmented geometrically based on tissue morphology and fluorescent signals from synaptophysin and α-SMA markers. The α-SMA-expressing stromal-cell-associated genes were involved in pathways of extracellular matrix modification, whereas, in tumor cells, the gene expression profiles were associated with pathways involved in cell proliferation. The comparison of gene expression profiles across all three PanNET grades revealed that the differences between grades are not only present at the level of the tumor but also in the α-SMA-expressing stromal cells. Furthermore, the tumor cells from regions with a rich presence of adjacent α-SMA-expressing stromal cells revealed an upregulation of matrix metalloproteinase-9 (MMP9) expression in grade 3 tumors. This study provides an in-depth characterization of gene expression profiles in α-SMA-expressing stromal and tumor cells, and outlines potential crosstalk mechanisms.

3.
Rev Esp Enferm Dig ; 116(10): 519-522, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39087662

RESUMEN

The incidence of pancreatic cancer is increasing, although globally it represents less than 3% of all cancers. Despite advances in medical and surgical management, survival rates have not significantly improved in recent years. Consequently, pancreatic cancer, though relatively uncommon, is the third leading cause of cancer-related deaths. This is primarily due to the disease´s late detection. Symptoms appear late and are nonspecific, and over 80% of cases are diagnosed at an advanced stage and unsuitable for curative surgery, resulting in a five-year survival rate below 10%. However, the exceptional cases that are diagnosed early show five-year survival rates exceeding 80%. Therefore, one of the keys to improving pancreatic cancer prognosis lies in early detection, making screening in high-risk individuals a potentially crucial strategy.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/diagnóstico por imagen , Detección Precoz del Cáncer/métodos , Factores de Riesgo
4.
Database (Oxford) ; 20242024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965703

RESUMEN

Accurate classification of genetic variants is crucial for clinical decision-making in hereditary cancer. In Spain, genetic diagnostic laboratories have traditionally approached this task independently due to the lack of a dedicated resource. Here we present SpadaHC, a web-based database for sharing variants in hereditary cancer genes in the Spanish population. SpadaHC is implemented using a three-tier architecture consisting of a relational database, a web tool and a bioinformatics pipeline. Contributing laboratories can share variant classifications and variants from individuals in Variant Calling Format (VCF) format. The platform supports open and restricted access, flexible dataset submissions, automatic pseudo-anonymization, VCF quality control, variant normalization and liftover between genome builds. Users can flexibly explore and search data, receive automatic discrepancy notifications and access SpadaHC population frequencies based on many criteria. In February 2024, SpadaHC included 18 laboratory members, storing 1.17 million variants from 4306 patients and 16 343 laboratory classifications. In the first analysis of the shared data, we identified 84 genetic variants with clinically relevant discrepancies in their classifications and addressed them through a three-phase resolution strategy. This work highlights the importance of data sharing to promote consistency in variant classifications among laboratories, so patients and family members can benefit from more accurate clinical management. Database URL: https://spadahc.ciberisciii.es/.


Asunto(s)
Bases de Datos Genéticas , Humanos , España , Variación Genética , Neoplasias/genética , Genes Relacionados con las Neoplasias , Predisposición Genética a la Enfermedad
5.
Gut ; 73(9): 1489-1508, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38754953

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has limited therapeutic options, particularly with immune checkpoint inhibitors. Highly chemoresistant 'stem-like' cells, known as cancer stem cells (CSCs), are implicated in PDAC aggressiveness. Thus, comprehending how this subset of cells evades the immune system is crucial for advancing novel therapies. DESIGN: We used the KPC mouse model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre) and primary tumour cell lines to investigate putative CSC populations. Transcriptomic analyses were conducted to pinpoint new genes involved in immune evasion. Overexpressing and knockout cell lines were established with lentiviral vectors. Subsequent in vitro coculture assays, in vivo mouse and zebrafish tumorigenesis studies, and in silico database approaches were performed. RESULTS: Using the KPC mouse model, we functionally confirmed a population of cells marked by EpCAM, Sca-1 and CD133 as authentic CSCs and investigated their transcriptional profile. Immune evasion signatures/genes, notably the gene peptidoglycan recognition protein 1 (PGLYRP1), were significantly overexpressed in these CSCs. Modulating PGLYRP1 impacted CSC immune evasion, affecting their resistance to macrophage-mediated and T-cell-mediated killing and their tumourigenesis in immunocompetent mice. Mechanistically, tumour necrosis factor alpha (TNFα)-regulated PGLYRP1 expression interferes with the immune tumour microenvironment (TME) landscape, promoting myeloid cell-derived immunosuppression and activated T-cell death. Importantly, these findings were not only replicated in human models, but clinically, secreted PGLYRP1 levels were significantly elevated in patients with PDAC. CONCLUSIONS: This study establishes PGLYRP1 as a novel CSC-associated marker crucial for immune evasion, particularly against macrophage phagocytosis and T-cell killing, presenting it as a promising target for PDAC immunotherapy.


Asunto(s)
Carcinoma Ductal Pancreático , Células Madre Neoplásicas , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Evasión Inmune , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Escape del Tumor/inmunología , Microambiente Tumoral/inmunología
6.
Fam Cancer ; 23(3): 383-392, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38753287

RESUMEN

The Spanish Familial Pancreatic Cancer Registry (PANGENFAM) was established in 2009 and aims to characterize the genotype and phenotype of familial pancreatic cancer (FPC). Furthermore, an early detection screening program for pancreatic ductal adenocarcinoma (PDAC) is provided to healthy high-risk individuals from FPC and hereditary pancreatic cancer families (first-degree relatives). This article describes our experience over the last 10 years in high-risk screening. Hereditary and familial pancreatic cancer families were identified through the oncology and gastroenterology units. High-risk individuals underwent annual screening with endoscopic ultrasound (EUS) and magnetic resonance (MRI) from age 40 or 10 years younger than the youngest affected family member. Results: PANGENFAM has enrolled 290 individuals from 143 families, including 52 PDAC cases and 238 high-risk individuals. All high-risk individuals eligible for screening were offered to enter the surveillance program, with 143 currently participating. Pancreatic abnormalities were detected in 94 individuals (median age 53 years (29-83), with common findings including cystic lesions and inhomogeneous parenchyma. Imaging test concordance was 66%. Surgical intervention was performed in 4 high-risk individuals following highly suspicious lesions detected by imaging. PANGENFAM is a valuable resource for science innovation, such as biobanking, with clinical and imaging data available for analysis. For high-risk families, it may offer a potential for early diagnosis. Collaboration with other national and international registries is needed to increase our understanding of the disease biology and to standardize criteria for inclusion and follow-up, optimizing cost-effectiveness and efficacy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sistema de Registros , Humanos , Neoplasias Pancreáticas/genética , Persona de Mediana Edad , España , Femenino , Masculino , Adulto , Anciano , Estudios de Seguimiento , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/diagnóstico , Anciano de 80 o más Años , Predisposición Genética a la Enfermedad , Detección Precoz del Cáncer/métodos , Imagen por Resonancia Magnética , Endosonografía , Factores de Riesgo , Carcinoma
7.
Fam Cancer ; 23(3): 233-246, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38780705

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the Western world. The number of diagnosed cases and the mortality rate are almost equal as the majority of patients present with advanced disease at diagnosis. Between 4 and 10% of pancreatic cancer cases have an apparent hereditary background, known as hereditary pancreatic cancer (HPC) and familial pancreatic cancer (FPC), when the genetic basis is unknown. Surveillance of high-risk individuals (HRI) from these families by imaging aims to detect PDAC at an early stage to improve prognosis. However, the genetic basis is unknown in the majority of HRIs, with only around 10-13% of families carrying known pathogenic germline mutations. The aim of this study was to assess an individual's genetic cancer risk based on sex and personal and family history of cancer. The Best Linear Unbiased Prediction (BLUP) methodology was used to estimate an individual's predicted risk of developing cancer during their lifetime. The model uses different demographic factors in order to estimate heritability. A reliable estimation of heritability for pancreatic cancer of 0.27 on the liability scale, and 0.07 at the observed data scale as obtained, which is different from zero, indicating a polygenic inheritance pattern of PDAC. BLUP was able to correctly discriminate PDAC cases from healthy individuals and those with other cancer types. Thus, providing an additional tool to assess PDAC risk HRI with an assumed genetic predisposition in the absence of known pathogenic germline mutations.


Asunto(s)
Carcinoma Ductal Pancreático , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Medición de Riesgo/métodos , Carcinoma
8.
J Natl Compr Canc Netw ; 22(3): 158-166, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38626807

RESUMEN

BACKGROUND: Pancreatic adenocarcinoma (PC) is a highly lethal malignancy with a survival rate of only 12%. Surveillance is recommended for high-risk individuals (HRIs), but it is not widely adopted. To address this unmet clinical need and drive early diagnosis research, we established the Pancreatic Cancer Early Detection (PRECEDE) Consortium. METHODS: PRECEDE is a multi-institutional international collaboration that has undertaken an observational prospective cohort study. Individuals (aged 18-90 years) are enrolled into 1 of 7 cohorts based on family history and pathogenic germline variant (PGV) status. From April 1, 2020, to November 21, 2022, a total of 3,402 participants were enrolled in 1 of 7 study cohorts, with 1,759 (51.7%) meeting criteria for the highest-risk cohort (Cohort 1). Cohort 1 HRIs underwent germline testing and pancreas imaging by MRI/MR-cholangiopancreatography or endoscopic ultrasound. RESULTS: A total of 1,400 participants in Cohort 1 (79.6%) had completed baseline imaging and were subclassified into 3 groups based on familial PC (FPC; n=670), a PGV and FPC (PGV+/FPC+; n=115), and a PGV with a pedigree that does not meet FPC criteria (PGV+/FPC-; n=615). One HRI was diagnosed with stage IIB PC on study entry, and 35.1% of HRIs harbored pancreatic cysts. Increasing age (odds ratio, 1.05; P<.001) and FPC group assignment (odds ratio, 1.57; P<.001; relative to PGV+/FPC-) were independent predictors of harboring a pancreatic cyst. CONCLUSIONS: PRECEDE provides infrastructure support to increase access to clinical surveillance for HRIs worldwide, while aiming to drive early PC detection advancements through longitudinal standardized clinical data, imaging, and biospecimen captures. Increased cyst prevalence in HRIs with FPC suggests that FPC may infer distinct biological processes. To enable the development of PC surveillance approaches better tailored to risk category, we recommend adoption of subclassification of HRIs into FPC, PGV+/FPC+, and PGV+/FPC- risk groups by surveillance protocols.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/epidemiología , Detección Precoz del Cáncer/métodos , Estudios Prospectivos , Predisposición Genética a la Enfermedad , Imagen por Resonancia Magnética
9.
Polymers (Basel) ; 15(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37571089

RESUMEN

3D bioprinting involves using bioinks that combine biological and synthetic materials. The selection of the most appropriate cell-material combination for a specific application is complex, and there is a lack of consensus on the optimal conditions required. Plasma-loaded alginate and alginate/methylcellulose (Alg/MC) inks were chosen to study their viscoelastic behaviour, degree of recovery, gelation kinetics, and cell survival after printing. Selected inks showed a shear thinning behavior from shear rates as low as 0.2 s-1, and the ink composed of 3% w/v SA and 9% w/v MC was the only one showing a successful stacking and 96% recovery capacity. A 0.5 × 106 PANC-1 cell-laden bioink was extruded with an Inkredible 3D printer (Cellink) through a D = 410 µm tip conical nozzle into 6-well culture plates. Cylindrical constructs were printed and crosslinked with CaCl2. Bioinks suffered a 1.845 Pa maximum pressure at the tip that was not deleterious for cellular viability. Cell aggregates can be appreciated for the cut total length observed in confocal microscopy, indicating a good proliferation rate at different heights of the construct, and suggesting the viability of the selected bioink PANC-1/P-Alg3/MC9 for building up three-dimensional bioprinted pancreatic tumor constructs.

10.
Biomed Pharmacother ; 165: 115179, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37481927

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy. In recent years, targeting epigenetic pathways has emerged as a promising approach to overcome tumor immunosuppression and cancer progression. Moreover, the progress in nanotechnology has provided new opportunities for enhancing the efficacy of conventional and epigenetic drugs. Nano-based drug delivery systems (NDDSs) offer several advantages, including improved drug pharmacokinetics, enhanced tumor penetration, and reduced systemic toxicity. Smart NDDSs enable precise targeting of stromal components and augment the effectiveness of immunotherapy through multiple drug delivery options. This review offers an overview of the latest nano-based approaches developed to achieve superior therapeutic efficacy and overcome drug resistance. We specifically focus on the TME and epigenetic-targeted therapies in the context of PDAC, discussing the advantages and limitations of current strategies while highlighting promising new developments. By emphasizing the immense potential of NDDSs in improving therapeutic outcomes in PDAC, our review paves the way for future research in this rapidly evolving field.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Nanomedicina , Sistema de Administración de Fármacos con Nanopartículas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral/genética , Neoplasias Pancreáticas
11.
J Vis Exp ; (195)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37306424

RESUMEN

Tumor organoids are three-dimensional (3D) ex vivo tumor models that recapitulate the biological key features of the original primary tumor tissues. Patient-derived tumor organoids have been used in translational cancer research and can be applied to assess treatment sensitivity and resistance, cell-cell interactions, and tumor cell interactions with the tumor microenvironment. Tumor organoids are complex culture systems that require advanced cell culture techniques and culture media with specific growth factor cocktails and a biological basement membrane that mimics the extracellular environment. The ability to establish primary tumor cultures highly depends on the tissue of origin, the cellularity, and the clinical features of the tumor, such as the tumor grade. Furthermore, tissue sample collection, material quality and quantity, as well as correct biobanking and storage are crucial elements of this procedure. The technical capabilities of the laboratory are also crucial factors to consider. Here, we report a validated SOP/protocol that is technically and economically feasible for the culture of ex vivo tumor organoids from fresh tissue samples of pancreatic adenocarcinoma origin, either from fresh primary resected patient donor tissue or patient-derived xenografts (PDX). The technique described herein can be performed in laboratories with basic tissue culture and mouse facilities and is tailored for wide application in the translational oncology field.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Bancos de Muestras Biológicas , Fibroblastos , Organoides , Microambiente Tumoral , Neoplasias Pancreáticas
12.
Cancers (Basel) ; 15(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37345168

RESUMEN

Gastrointestinal (GI) cancers are malignancies that develop within the digestive system and account for one in four cancer cases according to WHO data [...].

13.
Gut ; 72(2): 345-359, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35428659

RESUMEN

OBJECTIVE: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models. DESIGN: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation. RESULTS: Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment. CONCLUSION: Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Transición Epitelial-Mesenquimal/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Aminoácido Oxidorreductasas/genética , Neoplasias Pancreáticas
14.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555088

RESUMEN

Genetic aberrations, including chromosomal rearrangements, loss or amplification of DNA, and point mutations, are major elements of cancer development [...].


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Aberraciones Cromosómicas , Neoplasias/genética , Neoplasias/terapia , Mutación Puntual , ADN
15.
Crit Rev Oncol Hematol ; 180: 103865, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36334880

RESUMEN

Pancreatic neuroendocrine neoplasms (pNENs) are rare cancers with broad challenges for their management. The main clinical obstacles are the high rate of patients diagnosed at advanced stages, lack of prognostic markers for early detection of disease recurrence in resected patients, significant limitations in identifying those who will benefit from adjuvant therapy, and timely recognition of treatment response. Therefore, the discovery of new prognostic and predictive markers is necessary for patient stratification and clinical management. Liquid biopsy, which has revolutionized the field of clinical oncology, is extremely under-investigated in pNENs. This review highlights its potential and the recent advances in related technologies, as candidates for the delivery of the new tools that can help to refine pNEN diagnosis and to personalize treatment. In addition, the opportunities and limitations of available preclinical research models with regard to biomarker research are discussed in light of pNEN clinical needs.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/terapia , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Recurrencia Local de Neoplasia , Biopsia Líquida , Pronóstico
16.
J Vis Exp ; (187)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36190291

RESUMEN

The term liquid biopsy (LB) refers to molecules such as proteins, DNA, RNA, cells, or extracellular vesicles in blood and other bodily fluids that originate from the primary and/or metastatic tumor. LB has emerged as a mainstay in translational research and has started to become part of clinical oncology practice, providing a minimally invasive alternative to solid biopsy. The LB allows real-time monitoring of a tumor via a minimally invasive sample extraction, such as blood. The applications include early cancer detection, patient follow-up for the detection of disease progression, assessment of minimal residual disease, and potential identification of molecular progression and mechanism of resistance. In order to achieve a reliable analysis of these samples that can be reported in the clinic, the preanalytical procedures should be carefully considered and strictly followed. Sample collection, quality, and storage are crucial steps that determine their usefulness in downstream applications. Here, we present standardized protocols from our liquid biopsy working module for collecting, processing, and storing plasma and serum samples for downstream liquid biopsy analysis based on circulating-free DNA. The protocols presented here require standard equipment and are sufficiently flexible to be applied in most laboratories focused on biological procedures.


Asunto(s)
Ácidos Nucleicos Libres de Células , Células Neoplásicas Circulantes , Biomarcadores de Tumor , Humanos , Biopsia Líquida/métodos , Neoplasia Residual , Células Neoplásicas Circulantes/metabolismo , ARN
17.
Future Sci OA ; 8(5): FSO796, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35662744

RESUMEN

Aim: Glioblastoma (GB) is an aggressive tumor type and the detection of circulating endothelial cells (CECs) in peripheral blood has been related to angiogenesis. Materials & methods: A prospective single-center pilot study of CEC detection at diagnosis in 22 patients with GB was performed, using the US FDA-approved CellSearch system. Results: A CEC cutoff value was estimated using a receiver operating curve (ROC) and patients were classified into two groups: <40 CEC/4 ml and >40 CEC/4 ml blood. Median overall survival was 25.33 months for group 1 and 8.23 months for group 2 cases (p = 0.02). There was no correlation between CEC and PWI (perfusion-weighted imaging) RM. Conclusion: CEC detection has a prognostic value in GB cases at diagnosis.

18.
Oncol Rev ; 16(1): 531, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35340884

RESUMEN

Ultrasounds (US) are a non-ionizing mechanical wave, with less adverse effects than conventional pharmacological or surgical treatments. Different biological effects are induced in tissues and cells by ultrasound actuation depending on acoustic parameters, such as the wave intensity, frequency and treatment dose. This non-ionizing radiation has considerable applications in biomedicine including surgery, medical imaging, physical therapy and cancer therapy. Depending on the wave intensity, US are applied as high-intensity ultrasounds (HIUS) and low-intensity pulsed ultrasounds (LIPUS), with different effects on cells and tissues. HIUS produce thermal and mechanical effects, resulting in a large localized temperature increase, leading to tissue ablation and even tumor necrosis. This can be achieved by focusing low intensity waves emitted from different electrically shifted transducers, known as high-intensity focused ultrasounds (HIFU). LIPUS have been used extensively as a therapeutic, surgical and diagnostic tool, with diverse biological effects observed in tissues and cultured cells. US represent a non-invasive treatment strategy that can be applied to selected areas of the body, with limited adverse effects. In fact, tumor ablation using HIFU has been used as a curative treatment in patients with an early-stage pancreatic tumor and is an effective palliative treatment in patients with advanced stage disease. However, the biological effects, dose standardization, benefit-risk ratio and safety are not fully understood. Thus, it is an emerging field that requires further research in order to reach its full potential.

19.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216235

RESUMEN

Due to abundant stroma and extracellular matrix, accompanied by lack of vascularization, pancreatic ductal adenocarcinoma (PDAC) is characterized by severe hypoxia. Epigenetic regulation is likely one of the mechanisms driving hypoxia-induced epithelial-to-mesenchymal transition (EMT), responsible for PDAC aggressiveness and dismal prognosis. To verify the role of DNA methylation in this process, we assessed gene expression and DNA methylation changes in four PDAC cell lines. BxPC-3, MIA PaCa-2, PANC-1, and SU.86.86 cells were exposed to conditioned media containing cytokines and inflammatory molecules in normoxic and hypoxic (1% O2) conditions for 2 and 6 days. Cancer Inflammation and Immunity Crosstalk and Human Epithelial to Mesenchymal Transition RT² Profiler PCR Arrays were used to identify top deregulated inflammatory and EMT-related genes. Their mRNA expression and DNA methylation were quantified by qRT-PCR and pyrosequencing. BxPC-3 and SU.86.86 cell lines were the most sensitive to hypoxia and inflammation. Although the methylation of gene promoters correlated with gene expression negatively, it was not significantly influenced by experimental conditions. However, DNA methyltransferase inhibitor decitabine efficiently decreased DNA methylation up to 53% and reactivated all silenced genes. These results confirm the role of DNA methylation in EMT-related gene regulation and uncover possible new targets involved in PDAC progression.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Metilación de ADN/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Expresión Génica/genética , Neoplasias Pancreáticas/genética , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Epigénesis Genética/genética , Humanos , Neoplasias Pancreáticas/patología , Pronóstico , Neoplasias Pancreáticas
20.
Clin Transl Gastroenterol ; 13(3): e00468, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35166713

RESUMEN

INTRODUCTION: The IMMray PanCan-d test combines an 8-plex biomarker signature with CA19-9 in a proprietary algorithm to detect pancreatic ductal adenocarcinoma (PDAC) in serum samples. This study aimed to validate the clinical performance of the IMMray PanCan-d test and to better understand test performance in Lewis-null (le/le) individuals who cannot express CA19-9. METHODS: Serum samples from 586 individuals were analyzed with the IMMray PanCan-d biomarker signature and CA19-9 assay, including 167 PDAC samples, 203 individuals at high risk of familial/hereditary PDAC, and 216 healthy controls. Samples were collected at 11 sites in the United States and Europe. The study was performed by Immunovia, Inc (Marlborough, MA), and sample identity was blinded throughout the study. Test results were automatically generated using validated custom software with a locked algorithm and predefined decision value cutoffs for sample classification. RESULTS: The IMMray PanCan-d test distinguished PDAC stages I and II (n = 56) vs high-risk individuals with 98% specificity and 85% sensitivity and distinguished PDAC stages I-IV vs high-risk individuals with 98% specificity and 87% sensitivity. We identified samples with a CA19-9 value of 2.5 U/mL or less as probable Lewis-null (le/le) individuals. Excluding these 55 samples from the analysis increased the IMMray PanCan-d test sensitivity to 92% for PDAC stages I-IV (n = 157) vs controls (n = 379) while maintaining specificity at 99%; test sensitivity for PDAC stages I and II increased from 85% to 89%. DISCUSSION: These results demonstrate the IMMray PanCan-d blood test can detect PDAC with high specificity (99%) and sensitivity (92%).


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/diagnóstico , Biomarcadores de Tumor , Antígeno CA-19-9 , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Humanos , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA