Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Mol Ther Oncol ; 32(3): 200852, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39220111

RESUMEN

Chimeric antigen receptor (CAR) T cells have had limited success against solid tumors. Here, we used an oncolytic foamy virus (oFV) to display a model CAR target antigen (CD19) on tumors in combination with anti-CD19 CAR T cells. We generated oFV-Δbel2 and oFV-bel2 vectors to test the efficiency and stability of viral/CD19 spread. While both viruses conferred equal CAR T killing in vitro, the oFV-Δbel2 virus acquired G-to-A mutations, whereas oFV-bel2 virus had genome deletions. In subcutaneous tumor models in vivo, CAR T cells led to a significant decrease in oFV-specific bioluminescence, confirming clearance of oFV-infected tumor cells. However, the most effective therapy was with high-dose oFV in the absence of CAR T cells, indicating that CAR T clearance of oFV was detrimental. Moreover, in tumors that escaped CAR T cell treatment, resurgent virus contained deletions within the oFV-CD19 transgene, allowing the virus to escape CAR T elimination. Therefore, oFV represents a slow smoldering type of oncolytic virus, whose chronic spread through tumors generates anti-tumor therapy, which is abolished by CAR T therapy. These results suggest that further development of this oncolytic platform, with additional immunotherapeutic arming, may allow for an effective combination of chronic oncolysis.

2.
Biotechnol Prog ; 39(3): e3332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36799109

RESUMEN

Cell-free protein synthesis (CFPS) is a versatile biotechnology platform enabling a broad range of applications including clinical diagnostics, large-scale production of officinal therapeutics, small-scale on-demand production of personal magistral therapeutics, and exploratory research. The shelf stability and scalability of CFPS systems also have the potential to overcome cost and infrastructure challenges for distributing and using essential medical tests at home in both high- and low-income countries. However, CFPS systems are often more time-consuming and expensive to prepare than traditional in vivo systems, limiting their broader use. Much work has been done to lower CFPS costs by optimizing cell extract preparation, small molecule reagent recipes, and DNA template preparation. In order to further reduce reagent cost and preparation time, this work presents a CFPS system that does not require separately purified DNA template. Instead, a DNA plasmid encoding the recombinant protein is transformed into the cells used to make the extract, and the extract preparation process is modified to allow enough DNA to withstand homogenization-induced shearing. The finished extract contains sufficient levels of intact DNA plasmid for the CFPS system to operate. For a 10 mL scale CFPS system expressing recombinant sfGFP protein for a biosensor, this new system reduces reagent cost by more than half. This system is applied to a proof-of-concept glutamine sensor compatible with smartphone quantification to demonstrate its viability for further cost reduction and use in low-resource settings.


Asunto(s)
Biotecnología , Biosíntesis de Proteínas , Fermentación , Extractos Celulares , Proteínas Recombinantes/genética , Sistema Libre de Células/metabolismo , Extractos Vegetales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA