Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Environ Microbiome ; 19(1): 44, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956741

RESUMEN

BACKGROUND: Microbial methane oxidation, methanotrophy, plays a crucial role in mitigating the release of the potent greenhouse gas methane from aquatic systems. While aerobic methanotrophy is a well-established process in oxygen-rich environments, emerging evidence suggests their activity in hypoxic conditions. However, the adaptability of these methanotrophs to such environments has remained poorly understood. Here, we explored the genetic adaptability of aerobic methanotrophs to hypoxia in the methanogenic sediments of Lake Kinneret (LK). These LK methanogenic sediments, situated below the oxidic and sulfidic zones, were previously characterized by methane oxidation coupled with iron reduction via the involvement of aerobic methanotrophs. RESULTS: In order to explore the adaptation of the methanotrophs to hypoxia, we conducted two experiments using LK sediments as inoculum: (i) an aerobic "classical" methanotrophic enrichment with ambient air employing DNA stable isotope probing (DNA-SIP) and (ii) hypoxic methanotrophic enrichment with repeated spiking of 1% oxygen. Analysis of 16S rRNA gene amplicons revealed the enrichment of Methylococcales methanotrophs, being up to a third of the enriched community. Methylobacter, Methylogaea, and Methylomonas were prominent in the aerobic experiment, while hypoxic conditions enriched primarily Methylomonas. Using metagenomics sequencing of DNA extracted from these experiments, we curated five Methylococcales metagenome-assembled genomes (MAGs) and evaluated the genetic basis for their survival in hypoxic environments. A comparative analysis with an additional 62 Methylococcales genomes from various environments highlighted several core genetic adaptations to hypoxia found in most examined Methylococcales genomes, including high-affinity cytochrome oxidases, oxygen-binding proteins, fermentation-based methane oxidation, motility, and glycogen use. We also found that some Methylococcales, including LK Methylococcales, may denitrify, while metals and humic substances may also serve as electron acceptors alternative to oxygen. Outer membrane multi-heme cytochromes and riboflavin were identified as potential mediators for the utilization of metals and humic material. These diverse mechanisms suggest the ability of methanotrophs to thrive in ecological niches previously thought inhospitable for their growth. CONCLUSIONS: Our study sheds light on the ability of enriched Methylococcales methanotrophs from methanogenic LK sediments to survive under hypoxia. Genomic analysis revealed a spectrum of genetic capabilities, potentially enabling these methanotrophs to function. The identified mechanisms, such as those enabling the use of alternative electron acceptors, expand our understanding of methanotroph resilience in diverse ecological settings. These findings contribute to the broader knowledge of microbial methane oxidation and have implications for understanding and potential contribution methanotrophs may have in mitigating methane emissions in various environmental conditions.

3.
Front Microbiol ; 14: 1206414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577416

RESUMEN

In methane (CH4) generating sediments, methane oxidation coupled with iron reduction was suggested to be catalyzed by archaea and bacterial methanotrophs of the order Methylococcales. However, the co-existence of these aerobic and anaerobic microbes, the link between the processes, and the oxygen requirement for the bacterial methanotrophs have remained unclear. Here, we show how stimulation of aerobic methane oxidation at an energetically low experimental environment influences net iron reduction, accompanied by distinct microbial community changes and lipid biomarker patterns. We performed incubation experiments (between 30 and 120 days long) with methane generating lake sediments amended with 13C-labeled methane, following the additions of hematite and different oxygen levels in nitrogen headspace, and monitored methane turnover by 13C-DIC measurements. Increasing oxygen exposure (up to 1%) promoted aerobic methanotrophy, considerable net iron reduction, and the increase of microbes, such as Methylomonas, Geobacter, and Desulfuromonas, with the latter two being likely candidates for iron recycling. Amendments of 13C-labeled methanol as a potential substrate for the methanotrophs under hypoxia instead of methane indicate that this substrate primarily fuels methylotrophic methanogenesis, identified by high methane concentrations, strongly positive δ13CDIC values, and archaeal lipid stable isotope data. In contrast, the inhibition of methanogenesis by 2-bromoethanesulfonate (BES) led to increased methanol turnover, as suggested by similar 13C enrichment in DIC and high amounts of newly produced bacterial fatty acids, probably derived from heterotrophic bacteria. Our experiments show a complex link between aerobic methanotrophy and iron reduction, which indicates iron recycling as a survival mechanism for microbes under hypoxia.

4.
Environ Sci Technol ; 51(21): 12293-12301, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28965392

RESUMEN

Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.


Asunto(s)
Anaerobiosis , Archaea , Metano , Sedimentos Geológicos , Hierro , Minerales , Oxidación-Reducción , Sulfatos
5.
Front Microbiol ; 8: 766, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28529500

RESUMEN

The competition between sulfate reducing bacteria and methanogens over common substrates has been proposed as a critical control for methane production. In this study, we examined the co-existence of methanogenesis and sulfate reduction with shared substrates over a large range of sulfate concentrations and rates of sulfate reduction in estuarine systems, where these processes are the key terminal sink for organic carbon. Incubation experiments were carried out with sediment samples from the sulfate-methane transition zone of the Yarqon (Israel) estuary with different substrates and inhibitors along a sulfate concentrations gradient from 1 to 10 mM. The results show that methanogenesis and sulfate reduction can co-exist while the microbes share substrates over the tested range of sulfate concentrations and at sulfate reduction rates up to 680 µmol L-1 day-1. Rates of methanogenesis were two orders of magnitude lower than rates of sulfate reduction in incubations with acetate and lactate, suggesting a higher affinity of sulfate reducing bacteria for the available substrates. The co-existence of both processes was also confirmed by the isotopic signatures of δ34S in the residual sulfate and that of δ13C of methane and dissolved inorganic carbon. Copy numbers of dsrA and mcrA genes supported the dominance of sulfate reduction over methanogenesis, while showing also the ability of methanogens to grow under high sulfate concentration and in the presence of active sulfate reduction.

6.
Environ Microbiol Rep ; 8(5): 798-804, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27402503

RESUMEN

Changes in redox conditions occur in a wide range of microbial habitats, in particular at the sediment-water interface (SWI) of aquatic systems. A mesocosm study using intact sediment cores from Lake Stechlin (Germany) was performed to investigate the impact of redox changes on microbial communities at the SWI. The SWI was exposed to permanent oxic (OX) or anoxic (ANOX) or to variable (VR) redox conditions, and for molecular analysis sediment samples were taken at the start and after seven days of the treatment. We performed 16S rRNA amplicon sequencing to identify redox-specific changes in the composition of metabolically active microbes. Generally, the community of active microbes in the VR cores was similar to in the OX cores, but differed significantly from the ANOX cores. Interestingly, VR conditions resulted in a high fraction of a Crenothrix-like microorganism increasing in read abundance from 4 to 5% initially, up to 69% over the experimental period. This implies that periodic redox fluctuations select for specific bacteria in environments such as seiches-affected sediments of stratified lakes. In Lake Stechlin sediment cores, these redox fluctuations lead to increased activities of specific microorganisms and high organic matter turnover rates with profound implications for aquatic organic matter cycling.

7.
PLoS One ; 10(11): e0143428, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26599000

RESUMEN

The sediment-water interface of freshwater lakes is characterized by sharp chemical gradients, shaped by the interplay between physical, chemical and microbial processes. As dissolved oxygen is depleted in the uppermost sediment, the availability of alternative electron acceptors, e.g. nitrate and sulfate, becomes the limiting factor. We performed a time series experiment in a mesocosm to simulate the transition from aerobic to anaerobic conditions at the sediment-water interface. Our goal was to identify changes in the microbial activity due to redox transitions induced by successive depletion of available electron acceptors. Monitoring critical hydrochemical parameters in the overlying water in conjunction with a new sampling strategy for sediment bacteria enabled us to correlate redox changes in the water to shifts in the active microbial community and the expression of functional genes representing specific redox-dependent microbial processes. Our results show that during several transitions from oxic-heterotrophic condition to sulfate-reducing condition, nitrate-availability and the on-set of sulfate reduction strongly affected the corresponding functional gene expression. There was evidence of anaerobic methane oxidation with NOx. DGGE analysis revealed redox-related changes in microbial activity and expression of functional genes involved in sulfate and nitrite reduction, whereas methanogenesis and methanotrophy showed only minor changes during redox transitions. The combination of high-frequency chemical measurements and molecular methods provide new insights into the temporal dynamics of the interplay between microbial activity and specific redox transitions at the sediment-water interface.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Dulce/química , Sedimentos Geológicos/química , Oxidación-Reducción , Microbiología del Agua , Anaerobiosis , Bacterias/metabolismo , Biodegradación Ambiental , Análisis por Conglomerados , ADN Complementario/química , Electroforesis en Gel de Gradiente Desnaturalizante , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Alemania , Metano/química , Consorcios Microbianos , Nitratos/química , Óxido Nítrico/química , Oxígeno/química , Filogenia , Reacción en Cadena de la Polimerasa , ARN/química , ARN Ribosómico 16S/análisis , Sulfuros/química
8.
Geochem Trans ; 16: 7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26140024

RESUMEN

BACKGROUND: We studied the annual variability of the concentration and isotopic composition of main sulfur species and sulfide oxidation intermediates in the water column of monomictic fresh-water Lake Kinneret. Sulfate concentrations in the lake are <1 mM and similar to concentrations that are proposed to have existed in the Paleoproterozoic ocean. The main goal of this research was to explore biogeochemical constrains of sulfur cycling in the modern low-sulfate fresh-water lake and to identify which processes may be responsible for the isotopic composition of sulfur species in the Precambrian sedimentary rocks. RESULTS: At the deepest point of the lake, the sulfate inventory decreases by more than 20% between March and December due to microbial sulfate reduction leading to the buildup of hydrogen sulfide. During the initial stages of stratification, sulfur isotope fractionation between sulfate and hydrogen sulfide is low (11.6 ‰) and sulfur oxyanions (e.g. thiosulfate and sulfite) are the main products of the incomplete oxidation of hydrogen sulfide. During the stratification and at the beginning of the lake mixing (July-December), the inventory of hydrogen sulfide as well as of sulfide oxidation intermediates in the water column increases and is accompanied by an increase in sulfur isotope fractionation to 30 ± 4 ‰ in October. During the period of erosion of the chemocline, zero-valent sulfur prevails over sulfur oxyanions. In the terminal period of the mixing of the water column (January), the concentration of hydrogen sulfide decreases, the inventory of sulfide oxidation intermediates increases, and sulfur isotope fractionation decreases to 20 ± 2 ‰. CONCLUSIONS: Sulfide oxidation intermediates are present in the water column of Lake Kinneret at all stages of stratification with significant increase during the mixing of the water column. Hydrogen sulfide inventory in the water column increases from March to December, and sharply decreases during the lake mixis in January. Sulfur isotope fractionation between sulfate and hydrogen sulfide as well as concentrations of sulfide oxidation intermediates can be explained either by microbial sulfate reduction alone or by microbial sulfate reduction combined with microbial disproportionation of sulfide oxidation intermediates. Our study of sulfur cycle in Lake Kinneret may be useful for understanding the range of biogeochemical processes in low sulfate oceans over Earth history.

9.
PLoS One ; 8(4): e63127, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23646185

RESUMEN

Algal tests have developed into routine tools for testing toxicity of pollutants in aquatic environments. Meanwhile, in addition to algal growth rates, an increasing number of fluorescence based methods are used for rapid and sensitive toxicity measures. The present study stresses the suitability of delayed fluorescence (DF) as a promising parameter for biotests. DF is based on the recombination fluorescence at the reaction centre of photosystem II, which is emitted only by photosynthetically active cells. We analyzed the effects of three chemicals (3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 3,5 Dichlorophenol (3,5 DCP) and copper) on the shape of the DF decay kinetics for potential use in phytoplankton toxicity tests. The short incubation tests were done with four phytoplankton species, with special emphasis on the cyanobacterium Microcystis aeruginosa. All species exhibited a high sensitivity to DCMU, but cyanobacteria were more affected by copper and less by 3,5 DCP than the tested green algae. Analyses of changes in the DF decay curve in response to the added chemicals indicated the feasibility of the DF decay approach as a rapid and sensitive testing tool.


Asunto(s)
Chlorophyta/efectos de los fármacos , Cianobacterias/efectos de los fármacos , Fluorescencia , Herbicidas/toxicidad , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Relación Dosis-Respuesta a Droga , Cinética , Complejo de Proteína del Fotosistema II/metabolismo , Fitoplancton/efectos de los fármacos , Pruebas de Toxicidad
10.
Proc Natl Acad Sci U S A ; 108(49): 19657-61, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22089233

RESUMEN

The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8-2.4 nM⋅h(-1) at 6 m, which could explain 33-44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux.


Asunto(s)
Lagos/química , Metano/metabolismo , Oxígeno/metabolismo , Microbiología del Agua , Archaea/clasificación , Archaea/enzimología , Archaea/genética , Regulación Enzimológica de la Expresión Génica , Alemania , Datos de Secuencia Molecular , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estaciones del Año , Análisis de Secuencia de ADN
11.
Ecol Appl ; 18(7): 1591-603, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18839756

RESUMEN

Exploitation of freshwater resources is having catastrophic effects on the ecological dynamics, stability, and quality of those water resources on a global scale, especially in arid and semiarid regions. Lake Kinneret, Israel (the Biblical Sea of Galilee), the only major natural freshwater lake in the Middle East, has been transformed functionally into a reservoir over the course of approximately 70 years of hydrological alterations aimed mostly at producing electrical power and increasing domestic and agricultural water supply. Historical changes in lake chemistry and biology were reconstructed using analysis of sedimentary nutrient content, stable and radioisotope composition, biochemical and morphological fossils from algae, remains of aquatic invertebrates, and chemical indices of past light regimes. Together, these paleolimnological analyses of the lake's bottom sediments revealed that this transformation has been accompanied by acceleration in the rate of eutrophication, as indicated by increased accumulation rates of phosphorus, nitrogen, organic matter, phytoplankton and bacterial pigments, and remains of phytoplankton and zooplankton. Substantial increases in these indices of eutrophication coincide with periods of increased water-level fluctuations and drainage of a major upstream wetland in the early to middle 20th century and suggest that management of the lake for increased water supply has degraded water quality to the point that ecosystem stability and sustainability are threatened. Such destabilization may be a model for eutrophication of freshwater lakes in other arid regions of the world in which management emphasizes water quantity over quality.


Asunto(s)
Ecosistema , Agua Dulce , Monitoreo del Ambiente , Sedimentos Geológicos , Actividades Humanas , Israel , Estaciones del Año , Temperatura , Factores de Tiempo , Abastecimiento de Agua
12.
Environ Microbiol ; 9(1): 223-37, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17227427

RESUMEN

Acetate is an important intermediate in the decomposition of organic matter in anoxic freshwater sediments. Here, we identified distinct microorganisms active in its oxidation and transformation to methane in the anoxic methanogenic layers of Lake Kinneret (Israel) profundal sediment by rRNA-based stable isotope probing (RNA-SIP). After 18 days of incubation with amended [U-(13)C]acetate we found that archaeal 16S rRNA was (13)C-labelled to a far greater extent than bacterial rRNA. We identified acetoclastic methanogens related to Methanosaeta concilii as being most active in the degradation and assimilation of acetate. Oxidation of the acetate-methyl group played only a minor role, but nevertheless 'heavy'(13)C-labelled bacterial rRNA templates were identified. 'Heavy' bacteria were mainly affiliated with the Betaproteobacteria (mostly Rhodocyclales and Nitrosomonadales), the Nitrospira phylum (related to 'Magnetobacterium bavaricum' and Thermodesulfovibrio yellowstonii), and also with the candidate phylum 'Endomicrobia'. However, the mode of energy gain that allowed for the assimilation of (13)C-acetate by these bacterial groups remains unknown. It may have involved syntrophic oxidation of acetate, reduction of chlorinated compounds, reduction of humic substances, fermentation of organic compounds, or even predation of (13)C-labelled Methanosaeta spp. In summary, this SIP experiment shows that acetate carbon was predominantly consumed by acetoclastic methanogens in profundal Lake Kinneret sediment, while it was also utilized by a small and heterogeneous community of bacteria.


Asunto(s)
Acetatos/metabolismo , Archaea/clasificación , Bacterias/clasificación , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , ADN Ribosómico/genética , Israel , Metano/metabolismo , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico/genética , ARN Ribosómico 16S/genética
13.
Syst Appl Microbiol ; 30(3): 239-54, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16857336

RESUMEN

The microbial community structure of an anoxic profundal lake sediment, i.e., subtropical Lake Kinneret, was analysed with respect to its composition by culture-independent molecular methods including terminal restriction fragment length polymorphism (T-RFLP) analysis, comparative sequence analysis, and quantitative real-time PCR. In particular we were interested in the structure, species composition, and relative abundance of the overall microbial community in the methanogenic sediment layer (0-10 cm depth). Pairwise comparison of archaeal and bacterial 16S rRNA gene T-RFLP profiles obtained from three independent samplings indicated stability of the microbial community. The numbers of Archaea and Bacteria, quantified by real-time PCR, amounted to about 10(8) and 10(10) 16S rRNA gene copies cm(-3) sediment, respectively, suggesting that Archaea may account for only a minor fraction (approximately 1%) of the total prokaryotic community. Hydrogenotrophic Methanomicrobiales and acetoclastic Methanosaeta spp. dominated T-RFLP profiles of the archaeal community. T-RFLP profiles of the bacterial community were dominated by Deltaproteobacteria, sulphate reducers and syntrophs in particular. The second most abundant group was assigned to the Bacteroidetes-Chlorobi-group. Only one bacterial group, which was affiliated with halorespiring bacteria of subphylum II of the Chloroflexi, showed variation in abundance within the sediment samples investigated. Our study gives a comprehensive insight into the structure of the bacterial and archaeal community of a profundal lake sediment, indicating that sulphate reducers, syntrophs, bacteroidetes, halorespirers and methanogens are of particular importance in Lake Kinneret sediment.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Sedimentos Geológicos/microbiología , Archaea/genética , Bacterias/genética , Biodiversidad , ADN de Archaea/genética , ADN Bacteriano/genética , ADN Complementario , ADN Ribosómico/genética , Agua Dulce , Dosificación de Gen , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética
14.
Environ Sci Technol ; 38(24): 6460-7, 2004 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-15669300

RESUMEN

Current paradigms of reservoir ontogeny suggest that water-level fluctuations may increase sedimentary nutrient release, causing long-term eutrophication of water bodies formed by dryland flooding. Less is known of the changes in nutrient status following conversion of natural lakes into reservoirs. Here, we use historical hydrological and limnological data and paleolimnological records of sedimentary P accumulation to evaluate changes in nutrient storage in Lake Kinneret, Israel since approximately 1860. Impoundment in 1932 increased water level fluctuations and altered seasonal hydrologic patterns in the lake. Geochemical analysis of sediment deposits indicated that bulk sediment and P accumulation rates in the central lake increased >600% following dam installation (1930s), draining of Lake Hula wetlands (1951-1957), and diversion of surface water outflow (1964 to present). Further, comparison of sedimentary P stratigraphies with long-term chemical records showed that the period of maximum P deposition corresponds to observed increases in whole-lake and in hypolimnetic P content, as well as epilimnetic biological changes indicative of ongoing eutrophication. Together, these patterns suggest that hydrologic management of natural lakes can increase sedimentary nutrient flux under circumstances where lake volume and water levels become more variable.


Asunto(s)
Eutrofización , Fósforo/análisis , Fósforo/historia , Abastecimiento de Agua , Agricultura , Monitoreo del Ambiente , Sedimentos Geológicos/química , Historia del Siglo XX , Israel , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA