Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Med Res Methodol ; 23(1): 118, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37194009

RESUMEN

BACKGROUND: Data-sharing is increasingly encouraged or required by funders and journals. Data-sharing is more complicated for lifecourse studies that rely upon ongoing participation, but little is known about perspectives on data-sharing among participants of such studies. The aim of this qualitative study was to explore perspectives on data-sharing of participants in a birth cohort study. METHODS: Semi-structured interviews were conducted with 25 members of the Dunedin Multidisciplinary Health and Development Study when aged between 45 and 48 years. Interviews were led by the Director of the Dunedin Study and involved questions about different scenarios for data-sharing. The sample consisted of nine Dunedin Study members who are Maori (the Indigenous peoples of Aotearoa/New Zealand) and 16 who are non-Maori. RESULTS: Principles of grounded theory were applied to develop a model of participant perspectives on data-sharing. The model consists of three factors that inform a core premise that a one-size-fits-all approach to data-sharing will not suffice in lifecourse research. Participants suggested that data-sharing decisions should depend on the cohort and might need to be declined if any one Dunedin Study member was opposed (factor 1). Participants also expressed a proven sense of trust in the researchers and raised concerns about loss of control once data have been shared (factor 2). Participants described a sense of balancing opportunities for public good against inappropriate uses of data, highlighting variability in perceived sensitivity of data, and thus a need to take this into account if sharing data (factor 3). CONCLUSIONS: Communal considerations within cohorts, loss of control over shared data, and concerns about inappropriate uses of shared data need to be addressed through detailed informed consent before data-sharing occurs for lifecourse studies, particularly where this has not been established from the start of the study. Data-sharing may have implications for the retention of participants in these studies and thus may impact on the value of long-term sources of knowledge about health and development. Researchers, ethics committees, journal editors, research funders, and government policymakers need to consider participants' views when balancing the proposed benefits of data-sharing against the potential risks and concerns of participants in lifecourse research.


Asunto(s)
Difusión de la Información , Consentimiento Informado , Humanos , Persona de Mediana Edad , Estudios de Cohortes , Teoría Fundamentada , Investigación Cualitativa
2.
Biol Rev Camb Philos Soc ; 95(6): 1706-1719, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32648358

RESUMEN

Ecosystem monitoring is fundamental to our understanding of how ecosystem change is impacting our natural resources and is vital for developing evidence-based policy and management. However, the different types of ecosystem monitoring, along with their recommended applications, are often poorly understood and contentious. Varying definitions and strict adherence to a specific monitoring type can inhibit effective ecosystem monitoring, leading to poor program development, implementation and outcomes. In an effort to develop a more consistent and clear understanding of ecosystem monitoring programs, we here review the main types of monitoring and recommend the widespread adoption of three classifications of monitoring, namely, targeted, surveillance and landscape monitoring. Landscape monitoring is conducted over large areas, provides spatial data, and enables questions relating to where and when ecosystem change is occurring to be addressed. Surveillance monitoring uses standardised field methods to inform on what is changing in our environments and the direction and magnitude of that change, whilst targeted monitoring is designed around testable hypotheses over defined areas and is the best approach for determining the causes of ecosystem change. The classification system is flexible and can incorporate different interests, objectives, targets and characteristics as well as different spatial scales and temporal frequencies, while also providing valuable structure and consistency across distinct ecosystem monitoring programs. To support our argument, we examine the ability of each monitoring type to inform on six key types of questions that are routinely posed for ecosystem monitoring programs, such as where and when change is occurring, what is the magnitude of change, and how can the change be managed? As we demonstrate, each type of ecosystem monitoring has its own strengths and weaknesses, which should be carefully considered relative to the desired results. Using this scheme, scientists and land managers can design programs best suited to their needs. Finally, we assert that for our most serious environmental challenges, it is essential that we include information from each of these monitoring scales to inform on all facets of ecosystem change, and this is best achieved through close collaboration between the scales. With a renewed understanding of the importance of each monitoring type, along with greater commitment to monitor cooperatively, we will be well placed to address some of our greatest environmental challenges.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Conservación de los Recursos Naturales
3.
J Clin Invest ; 130(2): 838-852, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31725411

RESUMEN

Pattern recognition receptors (PRRs) are crucial for responses to infections and tissue damage; however, their role in autoimmunity is less clear. Herein we demonstrate that 2 C-type lectin receptors (CLRs) Mcl and Mincle play an important role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Congenic rats expressing lower levels of Mcl and Mincle on myeloid cells exhibited a drastic reduction in EAE incidence. In vivo silencing of Mcl and Mincle or blockade of their endogenous ligand SAP130 revealed that these receptors' expression in the central nervous system is crucial for T cell recruitment and reactivation into a pathogenic Th17/GM-CSF phenotype. Consistent with this, we uncovered MCL- and MINCLE-expressing cells in brain lesions of MS patients and we further found an upregulation of the MCL/MINCLE signaling pathway and an increased response following MCL/MINCLE stimulation in peripheral blood mononuclear cells from MS patients. Together, these data support a role for CLRs in autoimmunity and implicate the MCL/MINCLE pathway as a potential therapeutic target in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Lectinas Tipo C/inmunología , Esclerosis Múltiple/inmunología , Receptores Inmunológicos/inmunología , Transducción de Señal/inmunología , Células Th17/inmunología , Animales , Encefalomielitis Autoinmune Experimental/genética , Humanos , Inflamación/genética , Inflamación/inmunología , Lectinas Tipo C/genética , Esclerosis Múltiple/genética , Ratas , Ratas Transgénicas , Receptores Inmunológicos/genética , Transducción de Señal/genética
4.
Sci Rep ; 9(1): 7812, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127172

RESUMEN

While the conservation role of remaining natural habitats in anthropogenic landscapes is clear, the degree to which agricultural matrices impose limitations to animal use is not well understood, but vital to assess species' resilience to land use change. Using an occupancy framework, we evaluated how oil palm plantations affect the occurrence and habitat use of terrestrial mammals in the Colombian Llanos. Further, we evaluated the effect of undergrowth vegetation and proximity to forest on habitat use within plantations. Most species exhibited restricted distributions across the study area, especially in oil palm plantations. Habitat type strongly influenced habitat use of four of the 12 more widely distributed species with oil palm negatively affecting species such as capybara and naked-tailed armadillo. The remaining species showed no apparent effect of habitat type, but oil palm and forest use probabilities varied among species. Overall, generalist mesocarnivores, white-tailed deer, and giant anteater were more likely to use oil palm while the remaining species, including ocelot and lesser anteater, showed preferences for forest. Distance to nearest forest had mixed effects on species habitat use, while understory vegetation facilitated the presence of species using oil palm. Our findings suggest that allowing undergrowth vegetation inside plantations and maintaining nearby riparian corridors would increase the likelihood of terrestrial mammals' occurrence within oil palm landscapes.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Ecosistema , Bosques , Animales , Colombia , Ciervos , Didelphis/fisiología , Euterios/fisiología , Felidae/fisiología , Zorros/fisiología , Aceite de Palma/metabolismo
5.
Glob Health Promot ; 26(3_suppl): 44-53, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30964400

RESUMEN

For Maori in Aotearoa New Zealand, land is not only an economic foundation but an anchor for tribal identity and a spiritual base. The forced alienation of Maori land since the 1800s, due to colonisation, has distanced communities from a direct relationship with their lands. There is little published research on Maori community gardens (mara) and their potential to reconnect Maori with ancestral lands. This study explores the motivations for developing mara and examines the role of mara in Maori health promotion. The paper describes findings from kaupapa Maori research that involved interviews with seven leaders of mara initiatives. Our findings suggest that the development of mara is motivated by a desire to empower Maori collectives towards a vision of vital communities thriving as Maori. Mara provide a rich site for community development grounded in a cultural connection to ancestral land. The utilization of ancestral lands enables groups to draw on a deep sense of shared identity that is rooted in those lands and fosters an intergenerational orientation. Mara offer activity linked with ancestral knowledge, customary practices and tribal connection. They provide opportunities to practice Maori language and cultural processes in functional everyday ways, and thereby strengthen a sense of commitment to protect cultural heritage as a resource for community life. Importantly, hands-on collective activity with shared decision-making, which is characteristic of mara, fosters social cohesion and collective efficacy. Overall our findings indicate that mara are land-centred community development initiatives that fit within the parameters of Maori health promotion and have much potential to contribute to achievement of Maori health promotion outcomes.


Asunto(s)
Características Culturales , Jardinería/métodos , Promoción de la Salud/métodos , Nativos de Hawái y Otras Islas del Pacífico , Toma de Decisiones , Humanos , Entrevistas como Asunto , Motivación , Nueva Zelanda
7.
Ecol Evol ; 8(8): 4237-4251, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721294

RESUMEN

Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.

8.
PLoS One ; 13(5): e0197539, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29795615

RESUMEN

The rapid expansion of oil palm cultivation in the Neotropics has generated great debate around possible biodiversity impacts. Colombia, for example, is the largest producer of oil palm in the Americas, but the effects of oil palm cultivation on native fauna are poorly understood. Here, we compared how richness, abundance and composition of terrestrial mammal species differ between oil palm plantations and riparian forest in the Colombian Llanos region. Further, we determined the relationships and influence of landscape and habitat level variables on those metrics. We found that species richness and composition differed significantly between riparian forest and oil palm, with site level richness inside oil palm plantations 47% lower, on average, than in riparian forest. Within plantations, mammalian species richness was strongly negatively correlated with cattle abundance, and positively correlated with the density of undergrowth vegetation. Forest structure characteristics appeared to have weak and similar effects on determining mammal species richness and composition along riparian forest strips. Composition at the landscape level was significantly influenced by cover type, percentage of remaining forest and the distance to the nearest town, whereas within oil palm sites, understory vegetation, cattle relative abundance, and canopy cover had significant effects on community composition. Species specific abundance responses varied between land cover types, with oil palm having positive effects on mesopredators, insectivores and grazers. Our findings suggest that increasing habitat complexity, avoiding cattle and retaining native riparian forest-regardless of its structure-inside oil palm-dominated landscapes would help support higher native mammal richness and abundance at both local and landscape scales.


Asunto(s)
Arecaceae , Biodiversidad , Ecosistema , Mamíferos , Animales , Colombia , Geografía
9.
New Phytol ; 217(1): 407-415, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28833231

RESUMEN

Tall plant species disperse further distances than do short species, within and across dispersal syndromes, yet the driver underpinning this relationship is unclear. The ability of taller plants to invest more in dispersal structures may explain the positive relationship between plant height and dispersal distance. Here, we quantify the cross-species relationships between presence of dispersal structures, dispersal investment plant height and dispersal distance. Plant height, dispersal syndrome and dispersal investment data were collated for 1613 species from the literature, with dispersal distance data collated for 114 species. We find that species with high dispersal investment disperse further than do species with low dispersal investment. Tall species have a greater probability of having dispersal structures on their seeds compared with short species. For species with dispersal structures on their seeds, plant height is very weakly related to dispersal investment. Our results provide the first global confirmation of the dispersal investment-distance hypothesis, and show dispersal investment can be used for predicting species dispersal distances. However, our results and those of previous studies indicate plant height is still the best proxy for estimating species dispersal distances due to it being such a readily available plant trait.


Asunto(s)
Plantas , Dispersión de Semillas , Fenotipo , Semillas/fisiología
10.
Sci Rep ; 7(1): 6071, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28729670

RESUMEN

Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.


Asunto(s)
Calamus , Bosques , Bosque Lluvioso , Clima Tropical , Conservación de los Recursos Naturales , Demografía , Ecosistema , Ambiente
11.
Sci Rep ; 6: 30012, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27435389

RESUMEN

Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.


Asunto(s)
Biomasa , Carbono/análisis , Bosque Lluvioso , Australia , Conservación de los Recursos Naturales , Clima Tropical
12.
PLoS One ; 10(6): e0130529, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26126186

RESUMEN

The lack of capacity to monitor forest carbon stocks in developing countries is undermining global efforts to reduce carbon emissions. Involving local people in monitoring forest carbon stocks could potentially address this capacity gap. This study conducts a complete expert remeasurement of community-led biomass inventories in remote tropical forests of Papua New Guinea. By fully remeasuring and isolating the effects of 4,481 field measurements, we demonstrate that programmes employing local people (non-experts) can produce forest monitoring data as reliable as those produced by scientists (experts). Overall, non-experts reported lower biomass estimates by an average of 9.1%, equivalent to 55.2 fewer tonnes of biomass ha(-1), which could have important financial implications for communities. However, there were no significant differences between forest biomass estimates of expert and non-expert, nor were there significant differences in some of the components used to calculate these estimates, such as tree diameter at breast height (DBH), tree counts and plot surface area, but were significant differences between tree heights. At the landscape level, the greatest biomass discrepancies resulted from height measurements (41%) and, unexpectedly, a few large missing trees contributing to a third of the overall discrepancies. We show that 85% of the biomass discrepancies at the tree level were caused by measurement taken on large trees (DBH ≥50 cm), even though they consisted of only 14% of the stems. We demonstrate that programmes that engage local people can provide high-quality forest carbon data that could help overcome barriers to reducing forest carbon emissions in developing countries. Nonetheless, community-based monitoring programmes should prioritise reducing errors in the field that lead to the most important discrepancies, notably; overcoming challenges to accurately measure large trees.


Asunto(s)
Secuestro de Carbono/fisiología , Monitoreo del Ambiente/métodos , Árboles/crecimiento & desarrollo , Biomasa , Carbono/química , Ecosistema , Bosques , Papúa Nueva Guinea , Clima Tropical
13.
PLoS One ; 10(4): e0121724, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25830773

RESUMEN

Among co-occurring species, values for functionally important plant traits span orders of magnitude, are uni-modal, and generally positively skewed. Such data are usually log-transformed "for normality" but no convincing mechanistic explanation for a log-normal expectation exists. Here we propose a hypothesis for the distribution of seed masses based on generalised extreme value distributions (GEVs), a class of probability distributions used in climatology to characterise the impact of event magnitudes and frequencies; events that impose strong directional selection on biological traits. In tests involving datasets from 34 locations across the globe, GEVs described log10 seed mass distributions as well or better than conventional normalising statistics in 79% of cases, and revealed a systematic tendency for an overabundance of small seed sizes associated with low latitudes. GEVs characterise disturbance events experienced in a location to which individual species' life histories could respond, providing a natural, biological explanation for trait expression that is lacking from all previous hypotheses attempting to describe trait distributions in multispecies assemblages. We suggest that GEVs could provide a mechanistic explanation for plant trait distributions and potentially link biology and climatology under a single paradigm.


Asunto(s)
Plantas/anatomía & histología , Semillas/anatomía & histología , Evolución Biológica , Clima , Semillas/crecimiento & desarrollo
14.
Ecology ; 95(6): 1604-11, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25039224

RESUMEN

Lianas (climbing woody vines) are important structural parasites of tropical trees and may be increasing in abundance in response to global-change drivers. We assessed long-term (-14-year) changes in liana abundance and forest dynamics within 36 1-ha permanent plots spanning -600 km2 of undisturbed rainforest in central Amazonia. Within each plot, we counted each liana stem (> or = 2 cm diameter) and measured its diameter at 1.3 m height, and then used these data to estimate liana aboveground biomass. An initial liana survey was completed in 1997-1999 and then repeated in 2012, using identical methods. Liana abundance in the plots increased by an average of 1.00% +/- 0.88% per year, leading to a highly significant (t = 6.58, df = 35, P < 0.00001) increase in liana stem numbers. Liana biomass rose more slowly over time (0.32% +/- 1.37% per year) and the mean difference between the two sampling intervals was nonsignificant (t = 1.46, df = 35, P = 0.15; paired t tests). Liana size distributions shifted significantly (chi2 = 191, df = 8, P < 0.0001; Chi-square test for independence) between censuses, mainly as a result of a nearly 40% increase in the number of smaller (2-3 cm diameter) lianas, suggesting that lianas recruited rapidly during the study. We used long-term data on rainfall and forest dynamics from our study site to test hypotheses about potential drivers of change in liana communities. Lianas generally increase with rainfall seasonality, but we found no significant trends over time (1997-2012) in five rainfall parameters (total annual rainfall, dry-season rainfall, wet-season rainfall, number of very dry months, CV of monthly rainfall). However, rates of tree mortality and recruitment have increased significantly over time in our plots, and general linear mixed-effect models suggested that lianas were more abundant at sites with higher tree mortality and flatter topography. Rising concentrations of atmospheric CO2, which may stimulate liana growth, might also have promoted liana increases. Our findings clearly support the view that lianas are increasing in abundance in old-growth tropical forests, possibly in response to accelerating forest dynamics and rising CO2 concentrations. The aboveground biomass of trees was lowest in plots with abundant lianas, suggesting that lianas could reduce forest carbon storage and potentially alter forest dynamics if they continue to proliferate.


Asunto(s)
Ecosistema , Plantas/clasificación , Árboles , Animales , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Densidad de Población , Factores de Tiempo
15.
Am J Bot ; 100(11): 2250-60, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24186959

RESUMEN

PREMISE OF THE STUDY: Sprouting in woody plants promotes persistence in the face of disturbance, ultimately influencing population structure. Different disturbance regimes drive variable population responses, but there have been few direct tests of the relative differences in population structure to specific drivers. We measured population structure as genotypic diversity (clonality) as a function of hydrological regime for a riverine tree, Melaleuca leucadendra, a major structural component in flood landscapes in the Australian dry tropics. METHODS: We estimated clonality, genotypic richness, and population allelic diversity. The relationship among disturbance, genetic estimates of clonality, and population distinctiveness was compared with flood regime, characterized by return frequencies and hydrological stress at individual river reaches. KEY RESULTS: Two contrasting patterns of genotypic structure were detected and corresponded to order-of-magnitude differences in flood regime between sites. At mainstem locations characterized by greatest flood intensity, sprouting generated clonal structure to 17 m (30% ramets clonal). By contrast, clonality was atypical at lower-disturbance tributaries (0% clonal). Population allelic distributions showed extensive genetic exchange among mainstem locations, but strong genetic differentiation between mainstem and tributaries. CONCLUSIONS: Population structure and distinctiveness in riverine Melaleuca are determined by differences in sprouting and recruitment responses that depend on localized hydrological regime. Sprouting contributes to population persistence via localized clonal growth. Resprouting following disturbance in M. leucadendra may help explain its numerical dominance in tropical river systems. This study, although preliminary, suggests that flood ecosystems may represent excellent experimental systems to develop a better understanding of whole-organism responses to environmental drivers.


Asunto(s)
Inundaciones , Variación Genética , Melaleuca/crecimiento & desarrollo , Melaleuca/genética , Queensland , Ríos , Clima Tropical
16.
Commun Integr Biol ; 6(1): e22509, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23802039

RESUMEN

Insect biodiversity peaks in tropical rainforest environments where a large but as yet unknown proportion of species are found in the canopy. While there has been a proliferation of insect biodiversity research undertaken in the rainforest canopy, most studies focus solely on insects that inhabit the foliage. In a recent paper, we examined the distribution of canopy insects across five microhabitats (mature leaves, new leaves, flowers, fruit and suspended dead wood) in an Australian tropical rainforest, showing that the density (per dry weight gram of microhabitat) of insects on flowers were ten to ten thousand times higher than on the leaves. Flowers also supported a much higher number of species than expected based on their contribution to total forest biomass. Elsewhere we show that most of these beetle species were specialized to flowers with little overlap in species composition between different canopy microhabitats. Here we expand our discussion of the implications of our results with respect to specialization and the generation of insect biodiversity in the rainforest canopy. Lastly, we identify future directions for research into the biodiversity and specialization of flower-visitors in complex tropical rainforests.

17.
New Phytol ; 198(1): 252-263, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23316750

RESUMEN

Most plant species have a range of traits that deter herbivores. However, understanding of how different defences are related to one another is surprisingly weak. Many authors argue that defence traits trade off against one another, while others argue that they form coordinated defence syndromes. We collected a dataset of unprecedented taxonomic and geographic scope (261 species spanning 80 families, from 75 sites across the globe) to investigate relationships among four chemical and six physical defences. Five of the 45 pairwise correlations between defence traits were significant and three of these were tradeoffs. The relationship between species' overall chemical and physical defence levels was marginally nonsignificant (P = 0.08), and remained nonsignificant after accounting for phylogeny, growth form and abundance. Neither categorical principal component analysis (PCA) nor hierarchical cluster analysis supported the idea that species displayed defence syndromes. Our results do not support arguments for tradeoffs or for coordinated defence syndromes. Rather, plants display a range of combinations of defence traits. We suggest this lack of consistent defence syndromes may be adaptive, resulting from selective pressure to deploy a different combination of defences to coexisting species.


Asunto(s)
Plantas/química , Plantas/inmunología , Análisis por Conglomerados , Análisis de Componente Principal , Carácter Cuantitativo Heredable
18.
PLoS One ; 7(9): e45796, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029246

RESUMEN

Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the 'diversity jigsaw puzzle' than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness.


Asunto(s)
Biodiversidad , Escarabajos/fisiología , Árboles , Animales , Conducta Animal , Escarabajos/clasificación , Flores , Hojas de la Planta , Queensland , Clima Tropical
19.
J Anim Ecol ; 81(5): 1086-94, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22530991

RESUMEN

1. We tested the hypotheses that feeding guild structure of beetle assemblages changed with different arboreal microhabitats and that these differences were consistent across rainforest tree species. 2. Hand collection and beating techniques were used from the gondola of the Australian Canopy Crane to collect beetles from five microhabitats (mature leaves, flush leaves, flowers, fruit and suspended dead wood) within the rainforest canopy. A simple randomization procedure was implemented to test whether the abundances of each feeding guild on each microhabitat were different from that expected based on a null hypothesis of random distribution of individuals across microhabitats. 3. Beetles from different feeding guilds were not randomly distributed, but congregated on those microhabitats that are likely to provide the highest concentrations of their preferred food sources. Herbivorous beetles, in particular, were over-represented on flowers and flush foliage and under-represented on mature leaves and dead wood. Proportional numbers of species within each feeding guild were remarkably uniform across tree species for each microhabitat, but proportional abundances of feeding guilds were all significantly non-uniformly distributed between host tree species, regardless of microhabitat, confirming patterns previously found for arthropods in trees in temperate and tropical forests. 4. These results show that the canopy beetle community is partitioned into discrete assemblages between microhabitats and that this partitioning arises because of differences in feeding guild structure as a function of the diversity and the temporal and spatial availability of resources found on each microhabitat.


Asunto(s)
Escarabajos/fisiología , Ecosistema , Conducta Alimentaria/fisiología , Árboles , Clima Tropical , Animales , Australia
20.
Oecologia ; 168(4): 889-99, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21987269

RESUMEN

Models of impacts of climate change on species are generally based on correlations between current distributions and climatic variables, rather than a detailed understanding of the mechanisms that actually limit distribution. Many of the vertebrates endemic to rainforests of northeastern Australia are restricted to upland forests and considered to be threatened by climate change. However, for most of these species, the factors controlling their distributions are unknown. We examined the role of thermal intolerance as a possible mechanism limiting the distribution of Pseudochirops archeri (green ringtail possum), a specialist arboreal folivore restricted to rainforests above an altitude of 300 m in Australia's Wet Tropics. We measured short-term metabolic responses to a range of ambient temperatures, and found that P. archeri stores heat when ambient temperatures exceed 30°C, reducing water requirements for evaporative cooling. Due to the rate at which body temperature increases with ambient temperatures >30°C, this strategy is not effective over periods longer than 5 h. We hypothesise that the distribution of P. archeri is limited by interactions between (i) the duration and severity of extreme ambient temperatures (over 30°C), (ii) the scarcity of free water in the rainforest canopy in the dry season, and (iii) constraints on water intake from foliage imposed by plant secondary metabolites and fibre. We predict that dehydration becomes limiting for P. archeri where extreme ambient temperatures (>30°C) persist for more than 5 h per day over 4-6 days or more. Consistent with our hypothesis, the abundance of P. archeri in the field is correlated with the occurrence of extreme temperatures, declining markedly at sites where the average maximum temperature of the warmest week of the year is above 30°C. Assuming the mechanism of limitation is based on extreme temperatures, we expect impacts of climate change on P. archeri to occur in discrete, rapid events rather than as a slow contraction in range.


Asunto(s)
Aclimatación/fisiología , Deshidratación/veterinaria , Demografía , Modelos Biológicos , Zarigüeyas/fisiología , Temperatura , Árboles , Animales , Cambio Climático , Queensland
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA