Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Cyst Fibros ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39107154

RESUMEN

BACKGROUND: Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein for which there is no cure. One approach to cure CF is to correct the underlying mutations in the CFTR gene. We have used triplex-forming peptide nucleic acids (PNAs) loaded into biodegradable nanoparticles (NPs) in combination with donor DNAs as reagents for correcting mutations associated with genetic diseases including CF. Previously, we demonstrated that PNAs induce recombination between a donor DNA and the CFTR gene, correcting the F508del CFTR mutation in human cystic fibrosis bronchial epithelial cells (CFBE cells) and in a CF murine model leading to improved CFTR function with low off-target effects, however the level of correction was still below the threshold for therapeutic cure. METHODS: Here, we report the use of next generation, chemically modified gamma PNAs (γPNAs) containing a diethylene glycol substitution at the gamma position for enhanced DNA binding. These modified γPNAs yield enhanced gene correction of F508del mutation in human bronchial epithelial cells (CFBE cells) and in primary nasal epithelial cells from CF mice (NECF cells). RESULTS: Treatment of CFBE cells and NECF cells grown at air-liquid interface (ALI) by NPs containing γtcPNAs and donor DNA resulted in increased CFTR function measured by short circuit current and improved gene editing (up to 32 %) on analysis of genomic DNA. CONCLUSIONS: These findings provide the basis for further development of PNA and NP technology for editing of the CFTR gene.

2.
Eur J Pharmacol ; 978: 176771, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38925289

RESUMEN

The CFTR modulator Trikafta has markedly improved lung disease for Cystic Fibrosis (CF) patients carrying the common delta F508 (F508del-CFTR) CFTR mutation. F508del-CFTR results in an apical trafficking defect and loss of function in CFTR-expressing epithelial cells. However, Trikafta has not resulted in improved gastrointestinal function in CF patients. A humanized mouse model of F508del-CFTR was recently generated to evaluate CFTR modulators and other compounds to treat human F508del-CFTR CF intestinal disease. Short-term (4 h) treatment of rats with Dexamethasone (Dex) potently activates serum glucocorticoid kinase 1 (SGK1) and increases CFTR apical traffic and ion transport in the native intestine. This study examined CFTR localization and ion transport in intestinal segments from humanized F508del-CFTR mice following treatment with Dex in the presence/absence of Trikafta. Dex treatment improved apical CFTR localization and function but was inconsistent along intestinal segments. Combined treatment with Dex and Trikafta was superior to Dex alone but inconsistently improved CFTR localization and function. These data suggest further optimization of humanized CF mouse models will be necessary to test the efficacy of compounds to treat human CF intestinal disease.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Dexametasona , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Humanos , Ratones , Dexametasona/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Activación Enzimática/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Mutación , Masculino , Indoles , Benzodioxoles
3.
Nat Commun ; 15(1): 4247, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762483

RESUMEN

The in vivo efficacy of polymeric nanoparticles (NPs) is dependent on their pharmacokinetics, including time in circulation and tissue tropism. Here we explore the structure-function relationships guiding physiological fate of a library of poly(amine-co-ester) (PACE) NPs with different compositions and surface properties. We find that circulation half-life as well as tissue and cell-type tropism is dependent on polymer chemistry, vehicle characteristics, dosing, and strategic co-administration of distribution modifiers, suggesting that physiological fate can be optimized by adjusting these parameters. Our high-throughput quantitative microscopy-based platform to measure the concentration of nanomedicines in the blood combined with detailed biodistribution assessments and pharmacokinetic modeling provides valuable insight into the dynamic in vivo behavior of these polymer NPs. Our results suggest that PACE NPs-and perhaps other NPs-can be designed with tunable properties to achieve desired tissue tropism for the in vivo delivery of nucleic acid therapeutics. These findings can guide the rational design of more effective nucleic acid delivery vehicles for in vivo applications.


Asunto(s)
Macrófagos , Nanopartículas , Polímeros , Animales , Nanopartículas/química , Distribución Tisular , Ratones , Polímeros/química , Macrófagos/metabolismo , Humanos , Femenino , Sistemas de Liberación de Medicamentos , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA