Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Foods ; 13(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38254583

RESUMEN

Foods consumed raw, such as lettuce, can host food-borne human-pathogenic bacteria. In the worst-case, these diseases cause to death. To limit illness and industrial losses, one innovative sanitation method is non-thermal plasma, which offers an extremely efficient reduction of living microbial biomass. Unfortunately, the total viable count (TVC), one of the most common methods for quantifying antimicrobial effects, provides no detailed insights into the composition of the surviving microbial community after treatment. To address this information gap, different special agars were used to investigate the reduction efficiency of plasma-treated water (PTW) on different native cultivable microorganisms. All tested cultivable microbial groups were reduced using PTW. Gram-negative bacteria showed a reduction of 3.81 log10, and Gram-positive bacteria showed a reduction of 3.49 log10. Fungi were reduced by 3.89 log10. These results were further validated using a live/dead assay. MALDI-ToF (matrix-assisted laser-desorption-ionization time-of-flight)-based determination was used for a diversified overview. The results demonstrated that Gram-negative bacteria were strongly reduced. Interestingly, Gram-positive bacteria and fungi were reduced by nearly equal amounts, but could still recover from PTW treatment. MALDI-ToF mainly identified Pseudomonas spp. and groups of Bacillus on the tested lettuce. These results indicate that the PTW treatment could efficiently achieve a ubiquitous, spectrum-wide reduction of microbial life.

2.
Curr Res Food Sci ; 7: 100649, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38115898

RESUMEN

Plant-based foods like lettuce are an important part of the human diet and worldwide industry. On a global scale, the number of food-associated illnesses increased in the last decades. Conventional lettuce sanitation methods include cleaning either with tap or chloritized water. Beside these water-consuming strategies, physical plasma is an innovative and effective possibility for food sanitation. Recent studies with plasma-treated water showed an effective reduction of the microbial load. Plasma-processed air (PPA) is another great opportunity to reduce the microbial load and save water. To test the efficiency of PPA, the surface microbiome of treated lettuce was analyzed via proliferation assays with special agars, live/dead assays and tests for respiratory activity of the microorganisms. PPA showed a reduction of the colony forming units (CFU/mL) on all tested microbial groups (Gram-negative and Gram-positive bacteria, yeasts and molds). These results were supported by the live/dead assay. For further insights, the PPA-ingredients were detected with Fourier Transformation Infrared Spectroscopy (FTIR), which revealed NO2, NO and N2O5 as the main reactive species in the PPA. In the future, PPA could be an outstanding, on-demand sanitation step for higher food safety standards, especially in situations where humidity and high temperature should be avoided.

3.
Microorganisms ; 11(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37110355

RESUMEN

Plasma-treated water (PTW) possess anti-microbial potential against Pseudomonas fluorescence, which is observable for both suspended cells and cells organized in biofilms. Against that background, the chemical composition of PTW tends to focus. Various analytical techniques have been applied for analyses, which reveal various traceable reactive oxygen and nitrogen compounds (RONS). Based on these findings, it is our aim to generate a PTW analog (anPTW), which has been compared in its anti-microbial efficiency with freshly generated PTW. Additionally, a solution of every traceable compound of PTW has been mixed according to their PTW concentration. As references, we treated suspended cells and mature biofilms of P. fluorescence with PTW that originates from a microwave-driven plasma source. The anti-microbial efficiency of all solutions has been tested based on a combination of a proliferation, an XTT, and a live-dead assay. The outcomes of the test proved an anti-microbial power of PTW that suggests more active ingredients than the traceable compounds HNO3, HNO2, and H2O2 or the combined mixture of the analog.

4.
Foods ; 11(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36359968

RESUMEN

The control of the pathogenic load on foodstuffs is a key element in food safety. Particularly, seafood such as cold-smoked salmon is threatened by pathogens such as Salmonella sp. or Listeria monocytogenes. Despite strict existing hygiene procedures, the production industry constantly demands novel, reliable methods for microbial decontamination. Against that background, a microwave plasma-based decontamination technique via plasma-processed air (PPA) is presented. Thereby, the samples undergo two treatment steps, a pre-treatment step where PPA is produced when compressed air flows over a plasma torch, and a post-treatment step where the PPA acts on the samples. This publication embraces experiments that compare the total viable count (tvc) of bacteria found on PPA-treated raw (rs) and cold-smoked salmon (css) samples and their references. The tvc over the storage time is evaluated using a logistic growth model that reveals a PPA sensitivity for raw salmon (rs). A shelf-life prolongation of two days is determined. When cold-smoked salmon (css) is PPA-treated, the treatment reveals no further impact. When PPA-treated raw salmon (rs) is compared with PPA-untreated cold-smoked salmon (css), the PPA treatment appears as reliable as the cold-smoking process and retards the growth of cultivable bacteria in the same manner. The experiments are flanked by quality measurements such as color and texture measurements before and after the PPA treatment. Salmon samples, which undergo an overtreatment, solely show light changes such as a whitish surface flocculation. A relatively mild treatment as applied in the storage experiments has no further detected impact on the fish matrix.

5.
Front Microbiol ; 12: 652481, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995311

RESUMEN

Background: Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the control of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of PTW on the vitality and biofilm formation of Listeria monocytogenes, a common foodborne pathogen. Results: Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100, 300, and 900 s (pre-treatment time), after which the bacterial biofilm was exposed to the PTW for 1, 3, and 5 min (post-treatment time) for each pre-treatment time, separately. Colony-forming units (CFU) were significantly reduced by 4.7 log10 ± 0.29 log10, as well as the metabolic activity decreased by 47.9 ± 9.47% and the cell vitality by 69.5 ± 2.1%, compared to the control biofilms. LIVE/DEAD staining and fluorescence microscopy showed a positive correlation between treatment and incubation times, as well as reduction in vitality. Atomic force microscopy (AFM) indicated changes in the structure quality of the bacterial biofilm. Conclusion: These results indicate a promising antimicrobial impact of plasma-treated water on Listeria monocytogenes, which may lead to more targeted applications of plasma decontamination in the food industry in the future.

6.
Front Nutr ; 7: 627483, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585539

RESUMEN

This study evaluated the impact of a defined plasma treated water (PTW) when applied to various stages within fresh-cut endive processing. The quality characteristic responses were investigated to establish the impact of the PTW unit processes and where PTW may be optimally applied in a model process line to retain or improve produce quality. Different stages of application of PTW within the washing process were investigated and compared to tap water and chlorine dioxide. Fresh-cut endive (Cichorium endivia L.) samples were analyzed for retention of food quality characteristics. Measurements included color, texture, and nitrate quantification. Effects on tissue surface and cell organelles were observed through scanning electron and atomic force microscopy. Overall, the endive quality characteristics were retained by incorporating PTW in the washing process. Furthermore, promising results for color and texture characteristics were observed, which were supported by the microscopic assays of the vegetal tissue. While ion chromatography detected high concentrations of nitrite and nitrate in PTW, these did not affect the nitrate concentration of the lettuce tissue post-processing and were below the concentrations within EU regulations. These results provide a pathway to scale up the industrial application of PTW to improve and retain quality characteristic retention of fresh leafy products, whilst also harnessing the plasma functionalized water as a process intervention for reducing microbial load at multiple points, whether on the food surface, within the process water or on food-processing surfaces.

7.
Microb Biotechnol ; 12(5): 1034-1048, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31264377

RESUMEN

The susceptibility of Candida albicans biofilms to a non-thermal plasma treatment has been investigated in terms of growth, survival and cell viability by a series of in vitro experiments. For different time periods, the C. albicans strain SC5314 was treated with a microwave-induced plasma torch (MiniMIP). The MiniMIP treatment had a strong effect (reduction factor (RF) = 2.97 after 50 s treatment) at a distance of 3 cm between the nozzle and the superior regions of the biofilms. In addition, a viability reduction of 77% after a 20 s plasma treatment and a metabolism reduction of 90% after a 40 s plasma treatment time were observed for C. albicans. After such a treatment, the biofilms revealed an altered morphology of their cells by atomic force microscopy (AFM). Additionally, fluorescence microscopy and confocal laser scanning microscopy (CLSM) analyses of plasma-treated biofilms showed that an inactivation of cells mainly appeared on the bottom side of the biofilms. Thus, the plasma inactivation of the overgrown surface reveals a new possibility to combat biofilms.


Asunto(s)
Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Desinfectantes/farmacología , Microondas , Gases em Plasma/farmacología , Candida albicans/crecimiento & desarrollo , Metabolismo/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos
8.
Foods ; 8(2)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717375

RESUMEN

The synergistic antimicrobial effects of plasma-processed air (PPA) and plasma-treated water (PTW), which are indirectly generated by a microwave-induced non-atmospheric pressure plasma, were investigated with the aid of proliferation assays. For this purpose, microorganisms (Listeria monocytogenes, Escherichia coli, Pectobacterium carotovorum, sporulated Bacillus atrophaeus) were cultivated as monocultures on specimens with polymeric surface structures. Both the distinct and synergistic antimicrobial potential of PPA and PTW were governed by the plasma-on time (5⁻50 s) and the treatment time of the specimens with PPA/PTW (1⁻5 min). In single PTW treatment of the bacteria, an elevation of the reduction factor with increasing treatment time could be observed (e.g., reduction factor of 2.4 to 3.0 for P. carotovorum). In comparison, the combination of PTW and subsequent PPA treatment leads to synergistic effects that are clearly not induced by longer treatment times. These findings have been valid for all bacteria (L. monocytogenes > P. carotovorum = E. coli). Controversially, the effect is reversed for endospores of B. atrophaeus. With pure PPA treatment, a strong inactivation at 50 s plasma-on time is detectable, whereas single PTW treatment shows no effect even with increasing treatment parameters. The use of synergistic effects of PTW for cleaning and PPA for drying shows a clear alternative for currently used sanitation methods in production plants. Highlights: Non-thermal atmospheric pressure microwave plasma source used indirect in two different modes-gaseous and liquid; Measurement of short and long-living nitrite and nitrate in corrosive gas PPA (plasma-processed air) and complex liquid PTW (plasma-treated water); Application of PTW and PPA in single and combined use for biological decontamination of different microorganisms.

9.
J Biosci Bioeng ; 120(3): 275-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25782617

RESUMEN

From cultivation to the end of the post-harvest chain, heat-sensitive fresh produce is exposed to a variety of sources of pathogenic microorganisms. If contaminated, effective gentle means of sanitation are necessary to reduce bacterial pathogen load below their infective dose. The occurrence of rare or new serotypes raises the question of their tenacity to inactivation processes. In this study the antibacterial efficiency of cold plasma by an atmospheric pressure plasma-jet was examined against the Shiga toxin-producing outbreak strain Escherichia coli O104:H4. Argon was transformed into non-thermal plasma at a power input of 8 W and a gas flow of 5 L min(-1). Basic tests were performed on polysaccharide gel discs, including the more common E. coli O157:H7 and non-pathogenic E. coli DSM 1116. At 5 mm treatment distance and 10(5) cfu cm(-2) initial bacterial count, plasma reduced E. coli O104:H4 after 60 s by 4.6 ± 0.6 log, E. coli O157:H7 after 45 s by 4.5 ± 0.6 log, and E. coli DSM 1116 after 30 s by 4.4 ± 1.1 log. On the surface of corn salad leaves, gentle plasma application at 17 mm reduced 10(4) cfu cm(-2) of E. coli O104:H4 by 3.3 ± 1.1 log after 2 min, whereas E. coli O157:H7 was inactivated by 3.2 ± 1.1 log after 60 s. In conclusion, plasma treatment has the potential to reduce pathogens such as E. coli O104:H4 on the surface of fresh produce. However, a serotype-specific adaptation of the process parameters is required.


Asunto(s)
Presión Atmosférica , Frío , Microbiología de Alimentos , Inocuidad de los Alimentos/métodos , Gases em Plasma , Escherichia coli Shiga-Toxigénica/metabolismo , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/crecimiento & desarrollo , Humanos , Viabilidad Microbiana , Toxina Shiga/biosíntesis , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo , Zea mays/microbiología
10.
Mol Nutr Food Res ; 57(5): 920-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23483733

RESUMEN

The working group "Food technology and safety" of the DFG Senate Commission on Food Safety (SKLM) advises on new technologies concerning food processing. Treatment with plasma is a newly developed process, which is currently used only on a pilot scale in Europe. The novel plasma treatment technology is experimentally applied to consumer goods. There are also potential applications in the food sector, e.g. to inactivate microorganisms on food surfaces. There is still insufficient information on concomitant physical and chemical processes and changes induced in the food. On May 25th 2012, the SKLM issued a first statement on plasma treatment of foods in German. The English version was agreed on December 14th 2012.


Asunto(s)
Manipulación de Alimentos/métodos , Inocuidad de los Alimentos/métodos , Animales , Comportamiento del Consumidor , Seguridad de Productos para el Consumidor , Europa (Continente) , Contaminación de Alimentos/análisis , Hipersensibilidad a los Alimentos/metabolismo , Microbiología de Alimentos
11.
Proteomics ; 11(17): 3518-30, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21751354

RESUMEN

Plasma medicine and also decontamination of bacteria with physical plasmas is a promising new field of life science with huge interest especially for medical applications. Despite numerous successful applications of low temperature gas plasmas in medicine and decontamination, the fundamental nature of the interactions between plasma and microorganisms is to a large extent unknown. A detailed knowledge of these interactions is essential for the development of new as well as for the enhancement of established plasma-treatment procedures. In the present work we introduce for the first time a growth chamber system suitable for low temperature gas plasma treatment of bacteria in liquid medium. We have coupled the use of this apparatus to a combined proteomic and transcriptomic analyses to investigate the specific stress response of Bacillus subtilis 168 cells to treatment with argon plasma. The treatment with three different discharge voltages revealed not only effects on growth, but also clear evidence of cellular stress responses. B. subtilis suffered severe cell wall stress, which was made visible also by electron microscopy, DNA damages and oxidative stress as a result of exposure to plasma. These biological findings were supported by the detection of reactive plasma species by OES measurements.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Descontaminación/instrumentación , Gases em Plasma/metabolismo , Bacillus subtilis/citología , Frío , Descontaminación/métodos , Diseño de Equipo , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos
12.
GMS Krankenhhyg Interdiszip ; 3(1): Doc14, 2008 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-20204116

RESUMEN

The technological potential of non-thermal plasmas for the antimicrobial treatment of heat sensitive materials is well known and has been documented in a great number of research activities, but the realisation of industrial plasma-based decontamination processes remains a great challenge. One of the reasons for this situation is the fact that an antimicrobial treatment process needs to consider all properties of the product to be treated as well as the requirements of the complete procedure, e.g. a reprocessing of a medical instrument. The aim of the BMBF-funded network project PLASMOSE is to demonstrate the applicability of plasma-based processes for the antimicrobial treatment on selected, heat sensitive products. Modular and selective plasma sources, driven at atmospheric pressure are used. This basic approach shall combine the technological advantages of atmospheric pressure plasmas (avoidance of vacuum devices and batch processing) with the flexibility and handling properties of modular devices. TWO DIFFERENT OBJECTIVES WERE SELECTED: the outer surface treatment of medical products and the treatment of hollow packaging for pharmaceutical products. The outer surface treatment of medical products, in particular catheters for intracardial electrophysiological studies, is investigated by means of RF-driven plasma jets in argon. Due to its compact design they are predestined for modularisation and can be adapted to nearly any complex 3-dimensional structure as given by the medical products. The realisation of an antimicrobial treatment process of hollow packaging for pharmaceutical products has quite different demands. Such a process is needed to be implemented in in-line filling procedures and to work without additional process gases. The idea is to use an atmospheric air, microwave-driven self propagating discharge. The plasma process is optimized for the decontamination of 200 ml bottles by field simulation studies combined with optical emissions spectroscopy and micro-biological tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA