Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
2.
Abdom Radiol (NY) ; 49(7): 2231-2241, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023567

RESUMEN

PURPOSE: To evaluate magnetic resonance elastography (MRE)-based liver stiffness measurement as a biomarker to predict the onset of cirrhosis in early-stage alcohol-related liver disease (ALD) patients, and the transition from compensated to decompensated cirrhosis in ALD. METHODS: Patients with ALD and at least one MRE examination between 2007 and 2020 were included in this study. Patient demographics, liver chemistries, MELD score (within 30 days of the first MRE), and alcohol abstinence history were collected from the electronic medical records. Liver stiffness and fat fraction were measured. Disease progression was assessed in the records by noting cirrhosis onset in early-stage ALD patients and decompensation in those initially presenting with compensated cirrhosis. Nomograms and cut-off values of liver stiffness, derived from Cox proportional hazards models were created to predict the likelihood of advancing to cirrhosis or decompensation. RESULTS: A total of 182 patients (132 men, median age 57 years) were included in this study. Among 110 patients with early-stage ALD, 23 (20.9%) developed cirrhosis after a median follow-up of 6.2 years. Among 72 patients with compensated cirrhosis, 33 (45.8%) developed decompensation after a median follow-up of 4.2 years. MRE-based liver stiffness, whether considered independently or adjusted for age, alcohol abstinence, fat fraction, and sex, was a significant and independent predictor for both future cirrhosis (Hazard ratio [HR] = 2.0-2.2, p = 0.002-0.003) and hepatic decompensation (HR = 1.2-1.3, p = 0.0001-0.006). Simplified Cox models, thresholds, and corresponding nomograms were devised for practical use, excluding non-significant or biased variables. CONCLUSIONS: MRE-based liver stiffness assessment is a useful predictor for the development of cirrhosis or decompensation in patients with ALD.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Humanos , Diagnóstico por Imagen de Elasticidad/métodos , Masculino , Femenino , Persona de Mediana Edad , Hepatopatías Alcohólicas/diagnóstico por imagen , Hepatopatías Alcohólicas/complicaciones , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/complicaciones , Estudios Retrospectivos , Progresión de la Enfermedad , Valor Predictivo de las Pruebas , Hígado/diagnóstico por imagen , Anciano , Adulto
4.
J Magn Reson Imaging ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935749

RESUMEN

BACKGROUND: MR elastography (MRE) at 60 Hz is widely used for staging liver fibrosis. MRE with lower frequencies may provide inflammation biomarkers. PURPOSE: To establish a practical simultaneous dual-frequency liver MRE protocol at both 30 Hz and 60 Hz during a single examination and validate the occurrence of second harmonic waves at 30 Hz. STUDY TYPE: Retrospective. SUBJECTS: One hundred six patients (48 females, age: 50.0 ± 13.4 years) were divided as follows: Cohort One (15 patients with chronic liver disease [CLD] and 25 healthy volunteers) with simultaneous dual-frequency MRE. Cohort Two (66 patients with CLD) with second harmonic MRE. FIELD STRENGTH/SEQUENCE: 3-T, single- or dual-frequency MRE at 30 Hz and 60 Hz. ASSESSMENT: Liver stiffness (LS) in both cohorts was evaluated with manually placed volumetric ROIs by two independent analyzers. Image quality was assessed by three independent readers on a 4-point scale (0-3: none/failed, fair, moderate, excellent) based on the depth of wave propagation with 1/3 incremental penetration. The success rate was derived from the percentage of nonzero quality scores. STATISTICAL TESTS: Measurement agreement, bias, and repeatability of LS were assessed using intraclass correlation coefficients (ICCs), Bland-Altman plots, and repeatability coefficient (RC). Mann-Whitney U tests were used to evaluate the differences in image quality between different methods. A P-value <0.05 was considered statistically significant. RESULTS: Success rate was 97.5% in Cohort One and 91% success rate for the second harmonic MRE in Cohort Two. The second harmonic and conventional MRE showed excellent agreement in LS (all ICCs >0.90). The quality scores for the second harmonic wave images were lower than those from the conventional MRE (Z = -4.523). DATA CONCLUSION: Compared with conventional and second harmonic methods, simultaneous dual-frequency had better image quality, high success rate and the advantage of intrinsic co-registration, while the second harmonic method can be an alternative if custom waveform is not available. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

5.
Magn Reson Imaging ; 112: 54-62, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909764

RESUMEN

BACKGROUND: Magnetic resonance elastography (MRE) is a rapidly developing medical imaging technique that allows for quantitative assessment of the biomechanical properties of the tissue. MRE is now regarded as the most accurate noninvasive test for detecting and staging liver fibrosis. A two-dimensional (2D MRE) acquisition version is currently deployed at >2000 locations worldwide. 2D MRE allows for the evaluation of the magnitude of the complex shear modulus, also referred to as stiffness. The development of 3D vector MRE has enabled researchers to assess the biomechanical properties of small organs where wave propagation cannot be adequately analyzed with the 2D MRE imaging approach used in the liver. In 3D vector MRE, the shear waves are imaged and processed throughout a 3D volume and processed with an algorithm that accounts for wave propagation in any direction. Additionally, the motion is also imaged in x, y, and z directions at each voxel, allowing for more advanced processing to be applied. PURPOSE: This review describes the technical principles of 3D vector MRE, surveys its clinical applications in small organs, and discusses potential clinical significance of 3D vector MRE. CONCLUSION: 3D vector MRE is a promising tool for characterizing the biomechanical properties of small organs such as the uterus, pancreas, thyroid, prostate, and salivary glands. However, its potential has not yet been fully explored.

6.
PLoS One ; 19(6): e0305247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38917107

RESUMEN

Meningiomas, the most prevalent primary benign intracranial tumors, often exhibit complicated levels of adhesion to adjacent normal tissues, significantly influencing resection and causing postoperative complications. Surgery remains the primary therapeutic approach, and when combined with adjuvant radiotherapy, it effectively controls residual tumors and reduces tumor recurrence when complete removal may cause a neurologic deficit. Previous studies have indicated that slip interface imaging (SII) techniques based on MR elastography (MRE) have promise as a method for sensitively determining the presence of tumor-brain adhesion. In this study, we developed and tested an improved algorithm for assessing tumor-brain adhesion, based on recognition of patterns in MRE-derived normalized octahedral shear strain (NOSS) images. The primary goal was to quantify the tumor interfaces at higher risk for adhesion, offering a precise and objective method to assess meningioma adhesions in 52 meningioma patients. We also investigated the predictive value of MRE-assessed tumor adhesion in meningioma recurrence. Our findings highlight the effectiveness of the improved SII technique in distinguishing the adhesion degrees, particularly complete adhesion. Statistical analysis revealed significant differences in adhesion percentages between complete and partial adherent tumors (p = 0.005), and complete and non-adherent tumors (p<0.001). The improved technique demonstrated superior discriminatory ability in identifying tumor adhesion patterns compared to the previously described algorithm, with an AUC of 0.86 vs. 0.72 for distinguishing complete adhesion from others (p = 0.037), and an AUC of 0.72 vs. 0.67 for non-adherent and others. Aggressive tumors exhibiting atypical features showed significantly higher adhesion percentages in recurrence group compared to non-recurrence group (p = 0.042). This study validates the efficacy of the improved SII technique in quantifying meningioma adhesions and demonstrates its potential to affect clinical decision-making. The reliability of the technique, coupled with potential to help predict meningioma recurrence, particularly in aggressive tumor subsets, highlights its promise in guiding treatment strategies.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Imagen por Resonancia Magnética , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagen , Meningioma/patología , Meningioma/cirugía , Diagnóstico por Imagen de Elasticidad/métodos , Femenino , Persona de Mediana Edad , Masculino , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/cirugía , Anciano , Adulto , Imagen por Resonancia Magnética/métodos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Adherencias Tisulares/diagnóstico por imagen , Algoritmos
7.
Radiology ; 311(2): e233136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742971

RESUMEN

Background MR elastography (MRE) has been shown to have excellent performance for noninvasive liver fibrosis staging. However, there is limited knowledge regarding the precision and test-retest repeatability of stiffness measurement with MRE in the multicenter setting. Purpose To determine the precision and test-retest repeatability of stiffness measurement with MRE across multiple centers using the same phantoms. Materials and Methods In this study, three cylindrical phantoms made of polyvinyl chloride gel mimicking different degrees of liver stiffness in humans (phantoms 1-3: soft, medium, and hard stiffness, respectively) were evaluated. Between January 2021 and January 2022, phantoms were circulated between five different centers and scanned with 10 MRE-equipped clinical 1.5-T and 3-T systems from three major vendors, using two-dimensional (2D) gradient-recalled echo (GRE) imaging and/or 2D spin-echo (SE) echo-planar imaging (EPI). Similar MRE acquisition parameters, hardware, and reconstruction algorithms were used at each center. Mean stiffness was measured by a single observer for each phantom and acquisition on a single section. Stiffness measurement precision and same-session test-retest repeatability were assessed using the coefficient of variation (CV) and the repeatability coefficient (RC), respectively. Results The mean precision represented by the CV was 5.8% (95% CI: 3.8, 7.7) for all phantoms and both sequences combined. For all phantoms, 2D GRE achieved a CV of 4.5% (95% CI: 3.3, 5.7) whereas 2D SE EPI achieved a CV of 7.8% (95% CI: 3.1, 12.6). The mean RC of stiffness measurement was 5.8% (95% CI: 3.7, 7.8) for all phantoms and both sequences combined, 4.9% (95% CI: 2.7, 7.0) for 2D GRE, and 7.0% (95% CI: 2.9, 11.2) for 2D SE EPI (all phantoms). Conclusion MRE had excellent in vitro precision and same-session test-retest repeatability in the multicenter setting when similar imaging protocols, hardware, and reconstruction algorithms were used. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Tang in this issue.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fantasmas de Imagen , Diagnóstico por Imagen de Elasticidad/métodos , Diagnóstico por Imagen de Elasticidad/instrumentación , Reproducibilidad de los Resultados , Humanos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cirrosis Hepática/diagnóstico por imagen
8.
Radiol Cardiothorac Imaging ; 6(3): e230140, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38780427

RESUMEN

Purpose To investigate the feasibility of using quantitative MR elastography (MRE) to characterize the influence of aging and sex on left ventricular (LV) shear stiffness. Materials and Methods In this prospective study, LV myocardial shear stiffness was measured in 109 healthy volunteers (age range: 18-84 years; mean age, 40 years ± 18 [SD]; 57 women, 52 men) enrolled between November 2018 and September 2019, using a 5-minute MRE acquisition added to a clinical MRI protocol. Linear regression models were used to estimate the association of cardiac MRI and MRE characteristics with age and sex; models were also fit to assess potential age-sex interaction. Results Myocardial shear stiffness significantly increased with age in female (age slope = 0.03 kPa/year ± 0.01, P = .009) but not male (age slope = 0.008 kPa/year ± 0.009, P = .38) volunteers. LV ejection fraction (LVEF) increased significantly with age in female volunteers (0.23% ± 0.08 per year, P = .005). LV end-systolic volume (LVESV) decreased with age in female volunteers (-0.20 mL/m2 ± 0.07, P = .003). MRI parameters, including T1, strain, and LV mass, did not demonstrate this interaction (P > .05). Myocardial shear stiffness was not significantly correlated with LVEF, LV stroke volume, body mass index, or any MRI strain metrics (P > .05) but showed significant correlations with LV end-diastolic volume/body surface area (BSA) (slope = -3 kPa/mL/m2 ± 1, P = .004, r2 = 0.08) and LVESV/BSA (-1.6 kPa/mL/m2 ± 0.5, P = .003, r2 = 0.08). Conclusion This study demonstrates that female, but not male, individuals experience disproportionate LV stiffening with natural aging, and these changes can be noninvasively measured with MRE. Keywords: Cardiac, Elastography, Biological Effects, Experimental Investigations, Sexual Dimorphisms, MR Elastography, Myocardial Shear Stiffness, Quantitative Stiffness Imaging, Aging Heart, Myocardial Biomechanics, Cardiac MRE Supplemental material is available for this article. Published under a CC BY 4.0 license.


Asunto(s)
Envejecimiento , Diagnóstico por Imagen de Elasticidad , Ventrículos Cardíacos , Humanos , Femenino , Adulto , Masculino , Persona de Mediana Edad , Anciano , Diagnóstico por Imagen de Elasticidad/métodos , Anciano de 80 o más Años , Adolescente , Estudios Prospectivos , Envejecimiento/fisiología , Ventrículos Cardíacos/diagnóstico por imagen , Adulto Joven , Factores Sexuales , Función Ventricular Izquierda/fisiología , Imagen por Resonancia Magnética , Estudios de Factibilidad
9.
Eur Radiol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767658

RESUMEN

OBJECTIVES: To investigate associations between tissue diffusion, stiffness, and different tumor microenvironment features in resected hepatocellular carcinoma (HCC). METHODS: Seventy-two patients were prospectively included for preoperative magnetic resonance (MR) diffusion-weighted imaging and MR elastography examination. The mean apparent diffusion coefficient (ADC) and stiffness value were measured on the central three slices of the tumor and peri-tumor area. Cell density, tumor-stroma ratio (TSR), lymphocyte-rich HCC (LR-HCC), and CD8 + T cell infiltration were estimated in resected tumors. The interobserver agreement of MRI measurements and subjective pathological evaluation was assessed. Variables influencing ADC and stiffness were screened with univariate analyses, and then identified with multivariable linear regression. The potential relationship between explored imaging biomarkers and histopathological features was assessed with linear regression after adjustment for other influencing factors. RESULTS: Seventy-two patients (male/female: 59/13, mean age: 56 ± 10.2 years) were included for analysis. Inter-reader agreement was good or excellent regarding MRI measurements and histopathological evaluation. No correlation between tumor ADC and tumor stiffness was found. Multivariable linear regression confirmed that cell density was the only factor associated with tumor ADC (Estimate = -0.03, p = 0.006), and tumor-stroma ratio was the only factor associated with tumor stiffness (Estimate = -0.18, p = 0.03). After adjustment for fibrosis stage (Estimate = 0.43, p < 0.001) and age (Estimate = 0.04, p < 0.001) in the multivariate linear regression, intra-tumoral CD8 + T cell infiltration remained a significant factor associated with peri-tumor stiffness (Estimate = 0.63, p = 0.02). CONCLUSIONS: Tumor ADC surpasses tumor stiffness as a biomarker of cellularity. Tumor stiffness is associated with tumor-stroma ratio and peri-tumor stiffness might be an imaging biomarker of intra-tumoral immune microenvironment. CLINICAL RELEVANCE STATEMENT: Tissue stiffness could potentially serve as an imaging biomarker of the intra-tumoral immune microenvironment of hepatocellular carcinoma and aid in patient selection for immunotherapy. KEY POINTS: Apparent diffusion coefficient reflects cellularity of hepatocellular carcinoma. Tumor stiffness reflects tumor-stroma ratio of hepatocellular carcinoma and is associated with tumor-infiltrating lymphocytes. Tumor and peri-tumor stiffness might serve as imaging biomarkers of intra-tumoral immune microenvironment.

10.
Magn Reson Med ; 92(2): 676-687, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38523575

RESUMEN

PURPOSE: Abnormal adherence at functional myofascial interfaces is hypothesized as an important phenomenon in myofascial pain syndrome. This study aimed to investigate the feasibility of MR elastography (MRE)-based slip interface imaging (SII) to visualize and assess myofascial mobility in healthy volunteers. METHODS: SII was used to assess local shear strain at functional myofascial interfaces in the flexor digitorum profundus (FDP) and thighs. In the FDP, MRE was performed at 90 Hz vibration to each index, middle, ring, and little finger. Two thigh MRE scans were performed at 40 Hz with knees flexed and extended. The normalized octahedral shear strain (NOSS) maps were calculated to visualize myofascial slip interfaces. The entropy of the probability distribution of the gradient NOSS was computed for the two knee positions at the intermuscular interface between vastus lateralis and vastus intermedius, around rectus femoris, and between vastus intermedius and vastus medialis. RESULTS: NOSS map depicted distinct functional slip interfaces in the FDP for each finger. Compared to knee flexion, clearer slip interfaces and larger gradient NOSS entropy at the vastus lateralis-vastus intermedius interface were observed during knee extension, where the quadriceps are not passively stretched. This suggests the optimal position for using SII to visualize myofascial slip interface in skeletal muscles is when muscles are not subjected to any additional force. CONCLUSION: The study demonstrated that MRE-based SII can visualize and assess myofascial interface mobility in extremities. The results provide a foundation for investigating the hypothesis that myofascial pain syndrome is characterized by changes in the mobility of myofascial interfaces.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Estudios de Factibilidad , Humanos , Diagnóstico por Imagen de Elasticidad/métodos , Masculino , Adulto , Femenino , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Síndromes del Dolor Miofascial/diagnóstico por imagen , Síndromes del Dolor Miofascial/fisiopatología , Muslo/diagnóstico por imagen , Adulto Joven , Voluntarios Sanos
11.
Brain Commun ; 6(2): fcae073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505229

RESUMEN

Vascular brain injury results in loss of structural and functional connectivity and leads to cognitive impairment. Its various manifestations, including microinfarcts, microhaemorrhages and white matter hyperintensities, result in microstructural tissue integrity loss and secondary neurodegeneration. Among these, tissue microstructural alteration is a relatively early event compared with atrophy along the aging and neurodegeneration continuum. Understanding its association with cognition may provide the opportunity to further elucidate the relationship between vascular health and clinical outcomes. Magnetic resonance elastography offers a non-invasive approach to evaluate tissue mechanical properties, providing a window into the microstructural integrity of the brain. This retrospective study evaluated brain stiffness as a potential biomarker for vascular brain injury and its role in mediating the impact of vascular dysfunction on cognitive impairment. Seventy-five participants from the Mayo Clinic Study of Aging underwent brain imaging using a 3T MR imager with a spin-echo echo-planar imaging sequence for magnetic resonance elastography and T1- and T2-weighted pulse sequences. This study evaluated the effects of vascular biomarkers (white matter hyperintensities and cardiometabolic condition score) on brain stiffness using voxelwise analysis. Partial correlation analysis explored associations between brain stiffness, white matter hyperintensities, cardiometabolic condition and global cognition. Mediation analysis determined the role of stiffness in mediating the relationship between vascular biomarkers and cognitive performance. Statistical significance was set at P-values < 0.05. Diagnostic accuracy of magnetic resonance elastography stiffness for white matter hyperintensities and cardiometabolic condition was evaluated using receiver operator characteristic curves. Voxelwise linear regression analysis indicated white matter hyperintensities negatively correlate with brain stiffness, specifically in periventricular regions with high white matter hyperintensity levels. A negative association between cardiovascular risk factors and stiffness was also observed across the brain. No significant patterns of stiffness changes were associated with amyloid load. Global stiffness (µ) negatively correlated with both white matter hyperintensities and cardiometabolic condition when all other covariables including amyloid load were controlled. The positive correlation between white matter hyperintensities and cardiometabolic condition weakened and became statistically insignificant when controlling for other covariables. Brain stiffness and global cognition were positively correlated, maintaining statistical significance after adjusting for all covariables. These findings suggest mechanical alterations are associated with cognitive dysfunction and vascular brain injury. Brain stiffness significantly mediated the indirect effects of white matter hyperintensities and cardiometabolic condition on global cognition. Local cerebrovascular diseases (assessed by white matter hyperintensities) and systemic vascular risk factors (assessed by cardiometabolic condition) impact brain stiffness with spatially and statistically distinct effects. Global brain stiffness is a significant mediator between vascular disease measures and cognitive function, highlighting the value of magnetic resonance elastography-based mechanical assessments in understanding this relationship.

12.
Radiology ; 310(3): e231220, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470236

RESUMEN

Chronic liver disease is highly prevalent and often leads to fibrosis or cirrhosis and complications such as liver failure and hepatocellular carcinoma. The diagnosis and staging of liver fibrosis is crucial to determine management and mitigate complications. Liver biopsy for histologic assessment has limitations such as sampling bias and high interreader variability that reduce precision, which is particularly challenging in longitudinal monitoring. MR elastography (MRE) is considered the most accurate noninvasive technique for diagnosing and staging liver fibrosis. In MRE, low-frequency vibrations are applied to the abdomen, and the propagation of shear waves through the liver is analyzed to measure liver stiffness, a biomarker for the detection and staging of liver fibrosis. As MRE has become more widely used in clinical care and research, different contexts of use have emerged. This review focuses on the latest developments in the use of MRE for the assessment of liver fibrosis; provides guidance for image acquisition and interpretation; summarizes diagnostic performance, along with thresholds for diagnosis and staging of liver fibrosis; discusses current and emerging clinical applications; and describes the latest technical developments.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias Hepáticas , Humanos , Abdomen , Cirrosis Hepática/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen
13.
Neurotrauma Rep ; 5(1): 232-242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524727

RESUMEN

This study sought to identify whether an anatomical indicator of injury severity as measured by multiparametric magnetic resonance imaging (MRI) including magnetic resonance elastography (MRE), is predictive of a clinical measure of injury severity after moderate-severe traumatic brain injury (TBI). Nine individuals who were admitted to acute inpatient rehabilitation after moderate-to-severe TBI completed a comprehensive MRI protocol prior to discharge from rehabilitation, which included conventional MRI with diffusion tensor imaging (DTI). Of those, five of nine also underwent brain MRE to measure the brain parenchyma stiffness. Clinical severity of injury was measured by the length of post-traumatic amnesia (PTA). MRI-assessed non-hemorrhage contusion score and hemorrhage score, DTI-measured white matter fractional anisotropy, and MRE-measured lesion stiffness were all assessed. A higher hemorrhagic score was significantly associated with a longer length of PTA (p = 0.026). Participants with a longer PTA tended to have a higher non-hemorrhage contusion score and softer contusion lesions than the contralateral control side, although the small sample size did not allow for assessment of a significant association. To our knowledge, this is the first report applying MRI/MRE imaging protocol to quantitate altered brain anatomy after moderate-severe TBI and its association with PTA, a known clinical predictor of post-acute outcome. Future larger studies could lead to the development of prediction models that integrate clinical data with anatomical (MRI), structural (DTI), and mechanical (MRE) changes caused by TBI, to inform prognosis and care planning.

14.
AJNR Am J Neuroradiol ; 45(5): 662-667, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38485194

RESUMEN

BACKGROUND AND PURPOSE: Spontaneous intracranial hypotension is a condition resulting from a leak of CSF from the spinal canal arising independent of a medical procedure. Spontaneous intracranial hypotension can present with normal brain MR imaging findings and nonspecific symptoms, leading to the underdiagnosis in some patients and unnecessary invasive myelography in others who are found not to have the condition. Given the likelihood that spontaneous intracranial hypotension alters intracranial biomechanics, the goal of this study was to evaluate MR elastography as a potential noninvasive test to diagnose the condition. MATERIALS AND METHODS: We performed MR elastography in 15 patients with confirmed spontaneous intracranial hypotension from September 2022 to April 2023. Age, sex, symptom duration, and brain MR imaging Bern score were collected. MR elastography data were used to compute stiffness and damping ratio maps, and voxelwise modeling was performed to detect clusters of significant differences in mechanical properties between patients with spontaneous intracranial hypotension and healthy control participants. To evaluate diagnostic accuracy, we summarized each examination by 2 spatial pattern scores (one each for stiffness and damping ratio) and evaluated group-wise discrimination by receiver operating characteristic curve analysis. RESULTS: Patients with spontaneous intracranial hypotension exhibited significant differences in both stiffness and damping ratio (false discovery rate-corrected, Q < 0.05). Pattern analysis discriminated patients with spontaneous intracranial hypotension from healthy controls with an area under the curve of 0.97 overall, and the area under the curve was 0.97 in those without MR imaging findings of spontaneous intracranial hypotension. CONCLUSIONS: Results from this pilot study demonstrate MR elastography as a potential imaging biomarker and a noninvasive method for diagnosing spontaneous intracranial hypotension, including patients with normal brain MR imaging findings.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hipotensión Intracraneal , Imagen por Resonancia Magnética , Humanos , Hipotensión Intracraneal/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Anciano , Adulto Joven
15.
AJNR Am J Neuroradiol ; 45(3): 328-334, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38272572

RESUMEN

BACKGROUND AND PURPOSE: Normal pressure hydrocephalus is a treatable cause of dementia associated with distinct mechanical property signatures in the brain as measured by MR elastography. In this study, we tested the hypothesis that specific anatomic features of normal pressure hydrocephalus are associated with unique mechanical property alterations. Then, we tested the hypothesis that summary measures of these mechanical signatures can be used to predict clinical outcomes. MATERIALS AND METHODS: MR elastography and structural imaging were performed in 128 patients with suspected normal pressure hydrocephalus and 44 control participants. Patients were categorized into 4 subgroups based on their anatomic features. Surgery outcome was acquired for 68 patients. Voxelwise modeling was performed to detect regions with significantly different mechanical properties between each group. Mechanical signatures were summarized using pattern analysis and were used as features to train classification models and predict shunt outcomes for 2 sets of feature spaces: a limited 2D feature space that included the most common features found in normal pressure hydrocephalus and an expanded 20-dimensional (20D) feature space that included features from all 4 morphologic subgroups. RESULTS: Both the 2D and 20D classifiers performed significantly better than chance for predicting clinical outcomes with estimated areas under the receiver operating characteristic curve of 0.66 and 0.77, respectively (P < .05, permutation test). The 20D classifier significantly improved the diagnostic OR and positive predictive value compared with the 2D classifier (P < .05, permutation test). CONCLUSIONS: MR elastography provides further insight into mechanical alterations in the normal pressure hydrocephalus brain and is a promising, noninvasive method for predicting surgical outcomes in patients with normal pressure hydrocephalus.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hidrocéfalo Normotenso , Hidrocefalia , Humanos , Hidrocéfalo Normotenso/diagnóstico por imagen , Hidrocéfalo Normotenso/cirugía , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Resultado del Tratamiento
16.
NMR Biomed ; 37(2): e5047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37813110

RESUMEN

Magnetic resonance elastography (MRE) is an accurate noninvasive diagnostic tool for assessing the stiffness of parenchymal organs, including the spleen. However, this measurement may be biased due to postprandial changes in splenic stiffness. The aim of the current study was to evaluate postprandial changes in spleen stiffness assessed by MRE in a large sample of healthy volunteers. This was a prospective institutional research ethics board-approved study. Healthy volunteers with no history of liver disease were recruited for an MRE test and blood draw from December 2018 to July 2019. Each participant underwent spleen MRE after at least 4 h of fasting and again 30 min after a 1000 kcal meal. Also, 14 randomly selected volunteers underwent additional MRE examinations at 1.5 and 2.5 h after food intake. The MRE data were acquired at 60 Hz using a 1.5-T MRI scanner. The spleen stiffness was assessed using a weighted mean of stiffness values from regions of interest manually drawn on three to five spleen slices. Spearman's rank correlation, Wilcoxon signed-rank, Friedman, and Mann-Whitney tests were used for statistical analysis. A total of 100 volunteers met the inclusion criteria and were eventually enrolled in this study (age 23 ± 2 years; 65 women). The mean spleen stiffness for the whole group increased by 7.9% (p < 0.001) from the mean ± SD value of 5.09 ± 0.63 (95% CI: 4.96-5.21) kPa in the fasting state to 5.47 ± 0.66 (95% CI 5.34-5.60) kPa 30 min after the meal and then gradually decreased. However, even 2 h 30 min after the meal, the spleen stiffness was higher than in the fasting state. This difference was statistically significant at p less than 0.001. It was concluded that meal intake results in a statistically significant elevation of spleen stiffness that persists for 2.5 h. This finding supports the recommendation for routine fasting for more than 2.5 h prior to assessing MRE-based spleen stiffness.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Bazo , Humanos , Femenino , Adulto Joven , Adulto , Bazo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Estudios Prospectivos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos
17.
AJR Am J Roentgenol ; 222(1): e2329437, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37162036

RESUMEN

MR elastography (MRE), first described in 1995 and FDA-cleared in 2009, has emerged as an important tool for noninvasively detecting and staging liver fibrosis in patients with known or suspected chronic liver disease. This review focuses on a series of practical questions about the clinical use of MRE. Most head-to-head comparison studies with other laboratory and imaging-based tests have concluded that MRE has the highest diagnostic performance among tests for staging liver fibrosis. Limitations in the accuracy of biopsy as a standard of truth in staging liver fibrosis are increasingly being recognized. MRE-based measurements show promise as quantitative surrogates of disease severity and predictors of important clinical outcomes. The appropriate role of MRE in the management of patients with chronic liver disease is being actively incorporated into recognized clinical guidelines. Growing evidence shows that MRI measurement of elevated liver fat is the most important single biomarker for detecting nonalcoholic steatohepatitis (NASH) and that MRE-based liver stiffness is the most important single biomarker for detecting at-risk NASH (i.e., NASH with stage ≥ F2 fibrosis). Advances in MRE technology are offering higher precision and new biomarkers, which have potential to allow independent assessment of inflammation and other histologic processes in addition to fibrosis.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Diagnóstico por Imagen de Elasticidad/métodos , Reproducibilidad de los Resultados , Hígado/diagnóstico por imagen , Cirrosis Hepática/patología , Imagen por Resonancia Magnética/métodos , Biomarcadores
18.
Magn Reson Med ; 91(5): 1923-1935, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098427

RESUMEN

PURPOSE: To demonstrate a novel MR elastography (MRE) technique, termed here wavelet MRE. With this technique, broadband motion sensitivity is achievable. Moreover, the true tissue displacement can be reconstructed with a simple inverse transform. METHODS: A wavelet MRE sequence was developed with motion-encoding gradients based on Haar wavelets. From the phase images' displacement was estimated using an inverse transform. Simulations were performed using a frequency sweep and a transient as ground-truth motions. A PVC phantom was scanned using wavelet MRE and standard MRE with both transient (one and 10 cycles of 90-Hz motion) and steady-state dual-frequency motion (30 and 60 Hz) for comparison. The technique was tested in a human brain, and motion trajectories were estimated for each voxel. RESULTS: In simulation, the displacement information estimated from wavelet MRE closely matched the true motion. In the phantom test, the MRE phase data generated from the displacement information derived from wavelet MRE agreed well with standard MRE data. Testing of wavelet MRE to assess transient motion waveforms in the brain was successful, and the tissue motion observed was consistent with a previous study. CONCLUSION: The uniform and broadband frequency response of wavelet MRE makes it a promising method for imaging transient, multifrequency motion, or motion with unknown frequency content. One potential application is measuring the response of brain tissue undergoing low-amplitude, transient vibrations as a model for the study of traumatic brain injury.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Sonido
19.
Contemp Clin Trials ; 134: 107352, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37802221

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the liver manifestation of the metabolic syndrome with global prevalence reaching epidemic levels. Despite the high disease burden in the population only a small proportion of those with NAFLD will develop progressive liver disease, for which there is currently no approved pharmacotherapy. Identifying those who are at risk of progressive NAFLD currently requires a liver biopsy which is problematic. Firstly, liver biopsy is invasive and therefore not appropriate for use in a condition like NAFLD that affects a large proportion of the population. Secondly, biopsy is limited by sampling and observer dependent variability which can lead to misclassification of disease severity. Non-invasive biomarkers are therefore needed to replace liver biopsy in the assessment of NAFLD. Our study addresses this unmet need. The LITMUS Imaging Study is a prospectively recruited multi-centre cohort study evaluating magnetic resonance imaging and elastography, and ultrasound elastography against liver histology as the reference standard. Imaging biomarkers and biopsy are acquired within a 100-day window. The study employs standardised processes for imaging data collection and analysis as well as a real time central monitoring and quality control process for all the data submitted for analysis. It is anticipated that the high-quality data generated from this study will underpin changes in clinical practice for the benefit of people with NAFLD. Study Registration: clinicaltrials.gov: NCT05479721.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Estudios de Cohortes , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Imagen por Resonancia Magnética/métodos , Biomarcadores
20.
Diagnostics (Basel) ; 13(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685274

RESUMEN

PURPOSE: Magnetic resonance elastography (MRE) has been established as the most accurate noninvasive technique for diagnosing liver fibrosis. Recent publications have suggested that the measurement of splenic stiffness is useful in setting where portal hypertension may be present. The goal of the current study was to compile normative data for MRE-assessed stiffness measurements of the spleen in young adults. MATERIALS AND METHODS: A total of 100 healthy young Caucasian volunteers (65 females and 35 males) in the age range of 20 to 32 years were enrolled in this study. The participants reported no history of chronic spleen and liver disease, normal alcohol consumption, and a normal diet. The MRE data were acquired by using a 1.5 T whole-body scanner and a 2D GRE pulse sequence with 60 Hz excitation. Spleen stiffness was calculated as a weighted mean of stiffness values in the regions of interest manually drawn by the radiologist on three to five spleen slices. RESULTS: Mean spleen stiffness was 5.09 ± 0.65 kPa for the whole group. Male volunteers had slightly higher splenic stiffness compared to females: 5.28 ± 0.78 vs. 4.98 ± 0.51 kPa, however, this difference was not statistically significant (p = 0.12). Spleen stiffness did not correlate with spleen fat content and liver stiffness but a statistically significant correlation with spleen volume was found. CONCLUSIONS: The findings of this study provide normative values for 2D MRE-based measurement of spleen stiffness in young adults, a basis for assessing the value of this biomarker in young patients with portal system pathologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA