Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 4810, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29556042

RESUMEN

The paradigm of large geographic ranges in the deep sea has been challenged by genetic studies, which often reveal putatively widespread species to be several taxa with more restricted ranges. Recently, a phylogeographic study revealed that the tubeworm Sclerolinum contortum (Siboglinidae) inhabits vents and seeps from the Arctic to the Antarctic. Here, we further test the conspecificity of the same populations of S. contortum with additional mitochondrial and nuclear markers. We also investigate the genetic connectivity of another species with putatively the same wide geographic range - Nicomache lokii (Maldanidae). Our results support the present range of S. contortum, and the range of N. lokii is extended from vents and seeps in the Nordic Seas to mud volcanoes in the Barbados Trench and Antarctic vents. Sclerolinum contortum shows more pronounced geographic structure than N. lokii, but whether this is due to different dispersal capacities or reflects the geographic isolation of the sampled localities is unclear. Two distinct mitochondrial lineages of N. lokii are present in the Antarctic, which may result from two independent colonization events. The environmental conditions inhabited by the two species and implications for their distinct habitat preference is discussed.


Asunto(s)
Anélidos/clasificación , Anélidos/genética , Ecosistema , Genética de Población , Dinámica Poblacional , Animales , Regiones Antárticas , Regiones Árticas , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
2.
BMC Evol Biol ; 17(1): 222, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089027

RESUMEN

BACKGROUND: A range of higher animal taxa are shared across various chemosynthesis-based ecosystems (CBEs), which demonstrates the evolutionary link between these habitats, but on a global scale the number of species inhabiting multiple CBEs is low. The factors shaping the distributions and habitat specificity of animals within CBEs are poorly understood, but geographic proximity of habitats, depth and substratum have been suggested as important. Biogeographic studies have indicated that intermediate habitats such as sedimented vents play an important part in the diversification of taxa within CBEs, but this has not been assessed in a phylogenetic framework. Ampharetid annelids are one of the most commonly encountered animal groups in CBEs, making them a good model taxon to study the evolution of habitat use in heterotrophic animals. Here we present a review of the habitat use of ampharetid species in CBEs, and a multi-gene phylogeny of Ampharetidae, with increased taxon sampling compared to previous studies. RESULTS: The review of microhabitats showed that many ampharetid species have a wide niche in terms of temperature and substratum. Depth may be limiting some species to a certain habitat, and trophic ecology and/or competition are identified as other potentially relevant factors. The phylogeny revealed that ampharetids have adapted into CBEs at least four times independently, with subsequent diversification, and shifts between ecosystems have happened in each of these clades. Evolutionary transitions are found to occur both from seep to vent and vent to seep, and the results indicate a role of sedimented vents in the transition between bare-rock vents and seeps. CONCLUSION: The high number of ampharetid species recently described from CBEs, and the putative new species included in the present phylogeny, indicates that there is considerable diversity still to be discovered. This study provides a molecular framework for future studies to build upon and identifies some ecological and evolutionary hypotheses to be tested as new data is produced.


Asunto(s)
Sedimentos Geológicos , Respiraderos Hidrotermales , Poliquetos/fisiología , Animales , Bacterias/clasificación , Bacterias/metabolismo , Fenómenos Químicos , Ecosistema , Filogenia , Poliquetos/clasificación , Poliquetos/genética
3.
BMC Evol Biol ; 15: 280, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26667806

RESUMEN

BACKGROUND: Sclerolinum (Annelida: Siboglinidae) is a genus of small, wiry deep-sea tubeworms that depend on an endosymbiosis with chemosynthetic bacteria for their nutrition, notable for their ability to colonise a multitude of reducing environments. Since the early 2000s, a Sclerolinum population has been known to inhabit sediment-hosted hydrothermal vents within the Bransfield Strait, Southern Ocean, and whilst remaining undescribed, it has been suggested to play an important ecological role in this ecosystem. Here, we show that the Southern Ocean Sclerolinum population is not a new species, but more remarkably in fact belongs to the species S. contortum, first described from an Arctic mud volcano located nearly 16,000 km away. RESULTS: Our new data coupled with existing genetic studies extend the range of this species across both polar oceans and the Gulf of Mexico. Our analyses show that the populations of this species are structured on a regional scale, with greater genetic differentiation occurring between rather than within populations. Further details of the external morphology and tube structure of S. contortum are revealed through confocal and SEM imaging, and the ecology of this worm is discussed. CONCLUSIONS: These results shed further insight into the plasticity and adaptability of this siboglinid group to a range of reducing conditions, and into the levels of gene flow that occur between populations of the same species over a global extent.


Asunto(s)
Poliquetos/genética , Poliquetos/ultraestructura , Animales , Regiones Antárticas , Regiones Árticas , Bacterias/metabolismo , Flujo Génico , Respiraderos Hidrotermales , Océanos y Mares , Poliquetos/microbiología , Poliquetos/fisiología , Simbiosis
4.
J Biogeogr ; 42(5): 843-855, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-27524853

RESUMEN

AIM: The aim of this work was to improve understanding about the mode, geography and tempo of diversification in deep-sea organisms, using a time-calibrated molecular phylogeny of the heterobranch gastropod genus Scaphander. LOCATION: Atlantic and Indo-West Pacific (IWP) oceans. METHODS: Two mitochondrial gene markers (COI and 16S) and one nuclear ribosomal gene (28S) from six Atlantic species of Scaphander, and four IWP species were used to generate a multilocus phylogenetic hypothesis using uncorrelated relaxed-clock Bayesian methods implemented in beast and calibrated with the first occurrence of Scaphander in the fossil record (58.7-55.8 Ma). RESULTS: Two main clades were supported: clade A, with sister relationships between species and subclades from the Atlantic and IWP; and clade B, with two western Atlantic sister species. Our estimates indicate that the two earliest divergences in clade A occurred between the middle Eocene and late Miocene and the most recent speciation occurred within the middle Miocene to Pleistocene. The divergence between the two western Atlantic species in clade B was estimated at late Oligocene-Pliocene. MAIN CONCLUSIONS: The prevailing mode of speciation in Scaphander was allopatric, but one possible case of sympatric speciation was detected between two western Atlantic species. Sister relationships between IWP and Atlantic lineages suggest the occurrence both of vicariance events caused by the closure of the Tethyan Seaway and of dispersal between the two ocean basins, probably around South Africa during episodic disruptions of the deep-sea regional current system caused by glacial-interglacial cycles. Cladogenetic estimates do not support comparatively older diversification of deep-sea faunas, but corroborate the hypothesis of a pulse of diversification centred in the Oligocene and Miocene epochs. Amphi-Atlantic species were found to occur at deeper depths (bathyal-abyssal) and we hypothesize that trans-Atlantic connectivity is maintained by dispersal between neighbouring reproductive populations inhabiting the abyssal sea floor and by dispersal across the shelf and slope of Arctic and sub-Arctic regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA