Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cancers (Basel) ; 16(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893249

RESUMEN

Clinical trials with single-agent venetoclax/ABT-199 (anti-apoptotic BCL2 inhibitor) revealed that diffuse large B-cell lymphoma (DLBCL) is not solely dependent on BCL2 for survival. Gaining insight into pathways/proteins that increase venetoclax sensitivity or unique vulnerabilities in venetoclax-resistant DLBCL would provide new potential treatment avenues. Therefore, we generated acquired venetoclax-resistant DLBCL cells and evaluated these together with intrinsically venetoclax-resistant and -sensitive DLBCL lines. We identified resistance mechanisms, including alterations in BCL2 family members that differed between intrinsic and acquired venetoclax resistance and increased dependencies on specific pathways. Although combination treatments with BCL2 family member inhibitors may overcome venetoclax resistance, RNA-sequencing and drug/compound screens revealed that venetoclax-resistant DLBCL cells, including those with TP53 mutation, had a preferential dependency on oxidative phosphorylation. Mitochondrial electron transport chain complex I inhibition induced venetoclax-resistant, but not venetoclax-sensitive, DLBCL cell death. Inhibition of IDH2 (mitochondrial redox regulator) synergistically overcame venetoclax resistance. Additionally, both acquired and intrinsic venetoclax-resistant DLBCL cells were similarly sensitive to inhibitors of transcription, B-cell receptor signaling, and class I histone deacetylases. These approaches were also effective in DLBCL, follicular, and marginal zone lymphoma patient samples. Our results reveal there are multiple ways to circumvent or overcome the diverse venetoclax resistance mechanisms in DLBCL and other B-cell lymphomas and identify critical targetable pathways for future clinical investigations.

2.
Mol Cancer Ther ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064712

RESUMEN

Anticancer nucleosides are effective against solid tumors and hematological malignancies, but typically are prone to nucleoside metabolism resistance mechanisms. Using a nucleoside-specific multiplexed high-throughput screening approach, we discovered 4'-ethynyl-2'-deoxycytidine (EdC) as a third-generation anticancer nucleoside prodrug with preferential activity against diffuse large B-cell lymphoma (DLBCL) and acute lymphoblastic leukemia (ALL). EdC requires deoxycytidine kinase (DCK) phosphorylation for its activity and induced replication fork arrest and accumulation of cells in S-phase, indicating it acts as a chain terminator. A 2.1Å co-crystal structure of DCK bound to EdC and UDP reveals how the rigid 4'-alkyne of EdC fits within the active site of DCK. Remarkably, EdC was resistant to cytidine deamination and SAMHD1 metabolism mechanisms and exhibited higher potency against ALL compared to FDA approved nelarabine. Finally, EdC was highly effective against DLBCL tumors and B-ALL in vivo. These data characterize EdC as a pre-clinical nucleoside prodrug candidate for DLBCL and ALL.

3.
Cancer Res Commun ; 3(5): 842-859, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37377895

RESUMEN

Despite long non-coding RNAs (lncRNAs) emerging as key contributors to malignancies, their transcriptional regulation, tissue-type expression under different conditions, and functions remain largely unknown. Developing a combined computational and experimental framework, which integrates pan-cancer RNAi/CRISPR screens, and genomic, epigenetic, and expression profiles (including single-cell RNA sequencing), we report across multiple cancers, core p53-transcriptionally regulated lncRNAs, which were thought to be primarily cell/tissue-specific. These lncRNAs were consistently directly transactivated by p53 with different cellular stresses in multiple cell types and associated with pan-cancer cell survival/growth suppression and patient survival. Our prediction results were verified through independent validation datasets, our own patient cohort, and cancer cell experiments. Moreover, a top predicted p53-effector tumor-suppressive lncRNA (we termed PTSL) inhibited cell proliferation and colony formation by modulating the G2 regulatory network, causing G2 cell-cycle arrest. Therefore, our results elucidated previously unreported, high-confidence core p53-targeted lncRNAs that suppress tumorigenesis across cell types and stresses. Significance: Identification of pan-cancer suppressive lncRNAs transcriptionally regulated by p53 across different cellular stresses by integrating multilayered high-throughput molecular profiles. This study provides critical new insights into the p53 tumor suppressor by revealing the lncRNAs in the p53 cell-cycle regulatory network and their impact on cancer cell growth and patient survival.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética
4.
Cancer Discov ; 13(5): 1210-1229, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36734633

RESUMEN

Triple-negative breast cancers (TNBC) frequently inactivate p53, increasing their aggressiveness and therapy resistance. We identified an unexpected protein vulnerability in p53-inactivated TNBC and designed a new PROteolysis TArgeting Chimera (PROTAC) to target it. Our PROTAC selectively targets MDM2 for proteasome-mediated degradation with high-affinity binding and VHL recruitment. MDM2 loss in p53 mutant/deleted TNBC cells in two-dimensional/three-dimensional culture and TNBC patient explants, including relapsed tumors, causes apoptosis while sparing normal cells. Our MDM2-PROTAC is stable in vivo, and treatment of TNBC xenograft-bearing mice demonstrates tumor on-target efficacy with no toxicity to normal cells, significantly extending survival. Transcriptomic analyses revealed upregulation of p53 family target genes. Investigations showed activation and a required role for TAp73 to mediate MDM2-PROTAC-induced apoptosis. Our data, challenging the current MDM2/p53 paradigm, show MDM2 is required for p53-inactivated TNBC cell survival, and PROTAC-targeted MDM2 degradation is an innovative potential therapeutic strategy for TNBC and superior to existing MDM2 inhibitors. SIGNIFICANCE: p53-inactivated TNBC is an aggressive, therapy-resistant, and lethal breast cancer subtype. We designed a new compound targeting an unexpected vulnerability we identified in TNBC. Our MDM2-targeted degrader kills p53-inactivated TNBC cells, highlighting the requirement for MDM2 in TNBC cell survival and as a new therapeutic target for this disease. See related commentary by Peuget and Selivanova, p. 1043. This article is highlighted in the In This Issue feature, p. 1027.


Asunto(s)
Quimera Dirigida a la Proteólisis , Proteínas Proto-Oncogénicas c-mdm2 , Neoplasias de la Mama Triple Negativas , Proteína p53 Supresora de Tumor , Humanos , Animales , Ratones , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/fisiopatología , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quimera Dirigida a la Proteólisis/química , Quimera Dirigida a la Proteólisis/farmacología , Quimera Dirigida a la Proteólisis/uso terapéutico , Regulación hacia Arriba/efectos de los fármacos , Análisis de Supervivencia , Apoptosis/efectos de los fármacos , Proteína Tumoral p73/metabolismo , Xenoinjertos , Proteolisis/efectos de los fármacos , Femenino
5.
Cancer Causes Control ; 34(4): 307-319, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36598655

RESUMEN

PURPOSE: Despite the importance of engaging community members in research, multiple barriers exist. We conducted a mixed-methods evaluation to understand the opportunities and challenges of engaging community members in basic, clinical, translational, and population science research. METHODS: We designed a survey and an interview guide based on the constructs of the Consolidated Framework for Implementation Research. Surveys were distributed electronically to all cancer center investigators and interviews were conducted virtually with a select group of basic, clinical, and population science investigators. Survey data (n = 77) were analyzed across all respondents using frequency counts and mean scores; bivariate analyses examined differences in responses by research program affiliation, gender, race, and faculty rank. Interviews (n = 16) were audio recorded, transcribed verbatim, and analyzed using a reflective thematic approach. RESULTS: There was strong agreement among investigators that "Community engagement in research will help the SKCC address cancer disparities in the catchment area" (M 4.2, SD 0.9) and less agreement with items such as "I know how to find and connect with community members who I can engage in my research" (M 2.5, SD 1.3). Investigators mentioned challenges in communicating complex science to a lay audience but were open to training and workshops to acquire skills needed to integrate community members into their research. CONCLUSION: Cancer centers should develop and promote training and collaborative opportunities for investigators and community members. Overcoming challenges will lead to more patient- and community-centered cancer research in the future.


Asunto(s)
Neoplasias , Proyectos de Investigación , Humanos , Neoplasias/terapia
6.
Genome Med ; 14(1): 118, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229842

RESUMEN

BACKGROUND: Pathway enrichment analysis (PEA) is a common method for exploring functions of hundreds of genes and identifying disease-risk pathways. Moreover, different pathways exert their functions through crosstalk. However, existing PEA methods do not sufficiently integrate essential pathway features, including pathway crosstalk, molecular interactions, and network topologies, resulting in many risk pathways that remain uninvestigated. METHODS: To overcome these limitations, we develop a new crosstalk-based PEA method, CTpathway, based on a global pathway crosstalk map (GPCM) with >440,000 edges by combing pathways from eight resources, transcription factor-gene regulations, and large-scale protein-protein interactions. Integrating gene differential expression and crosstalk effects in GPCM, we assign a risk score to genes in the GPCM and identify risk pathways enriched with the risk genes. RESULTS: Analysis of >8300 expression profiles covering ten cancer tissues and blood samples indicates that CTpathway outperforms the current state-of-the-art methods in identifying risk pathways with higher accuracy, reproducibility, and speed. CTpathway recapitulates known risk pathways and exclusively identifies several previously unreported critical pathways for individual cancer types. CTpathway also outperforms other methods in identifying risk pathways across all cancer stages, including early-stage cancer with a small number of differentially expressed genes. Moreover, the robust design of CTpathway enables researchers to analyze both bulk and single-cell RNA-seq profiles to predict both cancer tissue and cell type-specific risk pathways with higher accuracy. CONCLUSIONS: Collectively, CTpathway is a fast, accurate, and stable pathway enrichment analysis method for cancer research that can be used to identify cancer risk pathways. The CTpathway interactive web server can be accessed here http://www.jianglab.cn/CTpathway/ . The stand-alone program can be accessed here https://github.com/Bioccjw/CTpathway .


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Neoplasias/genética , Reproducibilidad de los Resultados , Transducción de Señal/genética , Factores de Transcripción
7.
Mol Cell ; 82(21): 4176-4188.e8, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36152632

RESUMEN

Stem cell division is linked to tumorigenesis by yet-elusive mechanisms. The hematopoietic system reacts to stress by triggering hematopoietic stem and progenitor cell (HSPC) proliferation, which can be accompanied by chromosomal breakage in activated hematopoietic stem cells (HSCs). However, whether these lesions persist in their downstream progeny and induce a canonical DNA damage response (DDR) remains unclear. Inducing HSPC proliferation by simulated viral infection, we report that the associated DNA damage is restricted to HSCs and that proliferating HSCs rewire their DDR upon endogenous and clastogen-induced damage. Combining transcriptomics, single-cell and single-molecule assays on murine bone marrow cells, we found accelerated fork progression in stimulated HSPCs, reflecting engagement of PrimPol-dependent repriming, at the expense of replication fork reversal. Ultimately, competitive bone marrow transplantation revealed the requirement of PrimPol for efficient HSC amplification and bone marrow reconstitution. Hence, fine-tuning replication fork plasticity is essential to support stem cell functionality upon proliferation stimuli.


Asunto(s)
Replicación del ADN , Hematopoyesis , Ratones , Animales , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Daño del ADN , Proliferación Celular
8.
Biology (Basel) ; 11(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35741402

RESUMEN

The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.

9.
Elife ; 112022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35695878

RESUMEN

Quantification of gene dependency across hundreds of cell lines using genome-scale CRISPR screens has revealed co-essential pathways/modules and critical functions of uncharacterized genes. In contrast to protein-coding genes, robust CRISPR-based loss-of-function screens are lacking for long noncoding RNAs (lncRNAs), which are key regulators of many cellular processes, leaving many essential lncRNAs unidentified and uninvestigated. Integrating copy number, epigenetic, and transcriptomic data of >800 cancer cell lines with CRISPR-derived co-essential pathways, our method recapitulates known essential lncRNAs and predicts proliferation/growth dependency of 289 poorly characterized lncRNAs. Analyzing lncRNA dependencies across 10 cancer types and their expression alteration by diverse growth inhibitors across cell types, we prioritize 30 high-confidence pan-cancer proliferation/growth-regulating lncRNAs. Further evaluating two previously uncharacterized top proliferation-suppressive lncRNAs (PSLR-1, PSLR-2) showed they are transcriptionally regulated by p53, induced by multiple cancer treatments, and significantly correlate to increased cancer patient survival. These lncRNAs modulate G2 cell cycle-regulating genes within the FOXM1 transcriptional network, inducing a G2 arrest and inhibiting proliferation and colony formation. Collectively, our results serve as a powerful resource for exploring lncRNA-mediated regulation of cellular fitness in cancer, circumventing current limitations in lncRNA research.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Redes Reguladoras de Genes , Humanos , Neoplasias/genética , ARN Largo no Codificante/genética , Transcriptoma
10.
Cancer Res ; 82(3): 458-471, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903608

RESUMEN

Despite treatment with intensive chemotherapy, acute myelogenous leukemia (AML) remains an aggressive malignancy with a dismal outcome in most patients. We found that AML cells exhibit an unusually rapid accumulation of the repressive histone mark H3K27me3 on nascent DNA. In cell lines, primary cells and xenograft mouse models, inhibition of the H3K27 histone methyltransferase EZH2 to decondense the H3K27me3-marked chromatin of AML cells enhanced chromatin accessibility and chemotherapy-induced DNA damage, apoptosis, and leukemia suppression. These effects were further promoted when chromatin decondensation of AML cells was induced upon S-phase entry after release from a transient G1 arrest mediated by CDK4/6 inhibition. In the p53-null KG-1 and THP-1 AML cell lines, EZH2 inhibitor and doxorubicin cotreatment induced transcriptional reprogramming that was, in part, dependent on derepression of H3K27me3-marked gene promoters and led to increased expression of cell death-promoting and growth-inhibitory genes.In conclusion, decondensing H3K27me3-marked chromatin by EZH2 inhibition represents a promising approach to improve the efficacy of DNA-damaging cytotoxic agents in patients with AML. This strategy might allow for a lowering of chemotherapy doses, with a consequent reduction of treatment-related side effects in elderly patients with AML or those with significant comorbidities. SIGNIFICANCE: Pharmacological inhibition of EZH2 renders DNA of AML cells more accessible to cytotoxic agents, facilitating leukemia suppression with reduced doses of chemotherapy.See related commentary by Adema and Colla, p. 359.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Animales , Humanos , Ratones
11.
PeerJ ; 9: e11458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055490

RESUMEN

A better understanding of disease development and progression mechanisms at the molecular level is critical both for the diagnosis of a disease and for the development of therapeutic approaches. The advancements in high throughput technologies allowed to generate mRNA and microRNA (miRNA) expression profiles; and the integrative analysis of these profiles allowed to uncover the functional effects of RNA expression in complex diseases, such as cancer. Several researches attempt to integrate miRNA and mRNA expression profiles using statistical methods such as Pearson correlation, and then combine it with enrichment analysis. In this study, we developed a novel tool called miRcorrNet, which performs machine learning-based integration to analyze miRNA and mRNA gene expression profiles. miRcorrNet groups mRNAs based on their correlation to miRNA expression levels and hence it generates groups of target genes associated with each miRNA. Then, these groups are subject to a rank function for classification. We have evaluated our tool using miRNA and mRNA expression profiling data downloaded from The Cancer Genome Atlas (TCGA), and performed comparative evaluation with existing tools. In our experiments we show that miRcorrNet performs as good as other tools in terms of accuracy (reaching more than 95% AUC value). Additionally, miRcorrNet includes ranking steps to separate two classes, namely case and control, which is not available in other tools. We have also evaluated the performance of miRcorrNet using a completely independent dataset. Moreover, we conducted a comprehensive literature search to explore the biological functions of the identified miRNAs. We have validated our significantly identified miRNA groups against known databases, which yielded about 90% accuracy. Our results suggest that miRcorrNet is able to accurately prioritize pan-cancer regulating high-confidence miRNAs. miRcorrNet tool and all other supplementary files are available at https://github.com/malikyousef/miRcorrNet.

12.
Elife ; 102021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33416496

RESUMEN

The oncoprotein transcription factor MYC is a major driver of malignancy and a highly validated but challenging target for the development of anticancer therapies. Novel strategies to inhibit MYC may come from understanding the co-factors it uses to drive pro-tumorigenic gene expression programs, providing their role in MYC activity is understood. Here we interrogate how one MYC co-factor, host cell factor (HCF)-1, contributes to MYC activity in a human Burkitt lymphoma setting. We identify genes connected to mitochondrial function and ribosome biogenesis as direct MYC/HCF-1 targets and demonstrate how modulation of the MYC-HCF-1 interaction influences cell growth, metabolite profiles, global gene expression patterns, and tumor growth in vivo. This work defines HCF-1 as a critical MYC co-factor, places the MYC-HCF-1 interaction in biological context, and highlights HCF-1 as a focal point for development of novel anti-MYC therapies.


Tumours form when cells lose control of their growth. Usually, cells produce signals that control how much and how often they divide. But if these signals become faulty, cells may grow too quickly or multiply too often. For example, a group of proteins known as MYC proteins activate growth genes in a cell, but too much of these proteins causes cells to grow uncontrollably. With one third of all cancer deaths linked to excess MYC proteins, these molecules could be key targets for anti-cancer drugs. However, current treatments fail to target these proteins. One option for treating cancers linked to MYC proteins could be to target proteins that work alongside MYC proteins, such as the protein HCF-1, which can attach to MYC proteins. To test if HCF-1 could be a potential drug target, Popay et al. first studied how HCF-1 and MYC proteins interacted using specific cancer cells grown in the laboratory. This revealed that when the two proteins connected, they activated genes that trigger rapid cell growth. When these cancer cells were then injected into mice, tumours quickly grew. However, when the MYC and HCF-1 attachments in the cancer cells were disrupted, the tumours shrunk. This suggests that if anti-cancer drugs were able to target HCF-1 proteins, they could potentially reduce or even reverse the growth of tumours. While further research is needed to identify drug candidates, these findings reveal a promising target for treating tumours that stem from over-abundant MYC proteins.


Asunto(s)
Expresión Génica , Genes Mitocondriales , Factor C1 de la Célula Huésped/genética , Biogénesis de Organelos , Proteínas Proto-Oncogénicas c-myc/genética , Ribosomas/fisiología , Animales , Linfoma de Burkitt , Femenino , Factor C1 de la Célula Huésped/metabolismo , Humanos , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/metabolismo
13.
Oncogene ; 39(25): 4828-4843, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32427989

RESUMEN

The Mdm4 (alias MdmX) oncoprotein, like its paralogue and interaction partner Mdm2, antagonizes the tumor suppressor p53. p53-independent roles of the Mdm proteins are emerging, and we have reported the ability of Mdm2 to modify chromatin and to support DNA replication by suppressing the formation of R-loops (DNA/RNA-hybrids). We show here that the depletion of Mdm4 in p53-deficient cells compromises DNA replication fork progression as well. Among various deletion mutants, only full-length Mdm4 was able to support DNA replication fork progression. Co-depletion of Mdm4 and Mdm2 further impaired DNA replication, and the overexpression of each partially compensated for the other's loss. Despite impairing replication, Mdm4 depletion only marginally hindered cell proliferation, likely due to compensation through increased firing of replication origins. However, depleting Mdm4 sensitized p53-/- cells to the nucleoside analog gemcitabine, raising the future perspective of using Mdm4 inhibitors as chemosensitizers. Mechanistically, Mdm4 interacts with members of the Polycomb Repressor Complexes and supports the ubiquitination of H2A, thereby preventing the accumulation of DNA/RNA-hybrids. Thus, in analogy to previously reported activities of Mdm2, Mdm4 enables unperturbed DNA replication through the avoidance of R-loops.


Asunto(s)
Replicación del ADN/genética , Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Embrión de Mamíferos/citología , Fibroblastos/citología , Humanos , Ratones Noqueados , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Proteína p53 Supresora de Tumor/metabolismo
14.
Mol Cell Oncol ; 7(2): 1709388, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158922

RESUMEN

The oncoprotein transcription factor MYC is overexpressed in most cancers and is responsible for hundreds of thousands of cancer deaths worldwide every year. MYC is also a highly validated - but currently undruggable - anti-cancer target. We recently showed that breaking the interaction of MYC with its chromatin co-factor WD repeat-containing protein 5 (WDR5) promotes tumor regression in mouse xenografts, laying the foundation for a new strategy to inhibit MYC in the clinic.

15.
Nat Commun ; 11(1): 968, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32080184

RESUMEN

Recently, both 5p and 3p miRNA strands are being recognized as functional instead of only one, leaving many miRNA strands uninvestigated. To determine whether both miRNA strands, which have different mRNA-targeting sequences, cooperate to regulate pathways/functions across cancer types, we evaluate genomic, epigenetic, and molecular profiles of >5200 patient samples from 14 different cancers, and RNA interference and CRISPR screens in 290 cancer cell lines. We identify concordantly dysregulated miRNA 5p/3p pairs that coordinately modulate oncogenic pathways and/or cell survival/growth across cancers. Down-regulation of both strands of miR-30a and miR-145 recurrently increased cell cycle pathway genes and significantly reduced patient survival in multiple cancers. Forced expression of all four strands show cooperativity, reducing cell cycle pathways and inhibiting lung cancer cell proliferation and migration. Therefore, we identify miRNA whose 5p/3p strands function together to regulate core tumorigenic processes/pathways and reveal a previously unknown pan-cancer miRNA signature with patient prognostic power.


Asunto(s)
Carcinogénesis/genética , MicroARNs/genética , Neoplasias/genética , Carcinogénesis/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Pronóstico , Interferencia de ARN
16.
Sci Rep ; 10(1): 852, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965022

RESUMEN

Recent studies have revealed that feed-forward loops (FFLs) as regulatory motifs have synergistic roles in cellular systems and their disruption may cause diseases including cancer. FFLs may include two regulators such as transcription factors (TFs) and microRNAs (miRNAs). In this study, we extensively investigated TF and miRNA regulation pairs, their FFLs, and TF-miRNA mediated regulatory networks in two major types of testicular germ cell tumors (TGCT): seminoma (SE) and non-seminoma (NSE). Specifically, we identified differentially expressed mRNA genes and miRNAs in 103 tumors using the transcriptomic data from The Cancer Genome Atlas. Next, we determined significantly correlated TF-gene/miRNA and miRNA-gene/TF pairs with regulation direction. Subsequently, we determined 288 and 664 dysregulated TF-miRNA-gene FFLs in SE and NSE, respectively. By constructing dysregulated FFL networks, we found that many hub nodes (12 out of 30 for SE and 8 out of 32 for NSE) in the top ranked FFLs could predict subtype-classification (Random Forest classifier, average accuracy ≥90%). These hub molecules were validated by an independent dataset. Our network analysis pinpointed several SE-specific dysregulated miRNAs (miR-200c-3p, miR-25-3p, and miR-302a-3p) and genes (EPHA2, JUN, KLF4, PLXDC2, RND3, SPI1, and TIMP3) and NSE-specific dysregulated miRNAs (miR-367-3p, miR-519d-3p, and miR-96-5p) and genes (NR2F1 and NR2F2). This study is the first systematic investigation of TF and miRNA regulation and their co-regulation in two major TGCT subtypes.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , MicroARNs/genética , Neoplasias de Células Germinales y Embrionarias/clasificación , Neoplasias de Células Germinales y Embrionarias/genética , Seminoma/clasificación , Seminoma/genética , Neoplasias Testiculares/clasificación , Neoplasias Testiculares/genética , Factores de Transcripción/genética , Humanos , Factor 4 Similar a Kruppel , Masculino
18.
Proc Natl Acad Sci U S A ; 116(50): 25260-25268, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767764

RESUMEN

The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor for which structural information is available is WDR5, which interacts with MYC to facilitate its recruitment to chromatin. To explore whether disruption of the MYC-WDR5 interaction could potentially become a viable anticancer strategy, we developed a Burkitt's lymphoma system that allows replacement of wild-type MYC for mutants that are defective for WDR5 binding or all known nuclear MYC functions. Using this system, we show that WDR5 recruits MYC to chromatin to control the expression of genes linked to biomass accumulation. We further show that disrupting the MYC-WDR5 interaction within the context of an existing cancer promotes rapid and comprehensive tumor regression in vivo. These observations connect WDR5 to a core tumorigenic function of MYC and establish that, if a therapeutic window can be established, MYC-WDR5 inhibitors could be developed as anticancer agents.


Asunto(s)
Linfoma de Burkitt/metabolismo , Cromatina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Linfoma de Burkitt/genética , Carcinogénesis , Línea Celular Tumoral , Cromatina/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Desnudos , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética
19.
J Immunol ; 203(6): 1457-1467, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31391233

RESUMEN

IL-33 is an IL-1 family member protein that is a potent driver of inflammatory responses in both allergic and nonallergic disease. This proinflammatory effect is mediated primarily by extracellular release of IL-33 from stromal cells and binding of the C-terminal domain of IL-33 to its receptor ST2 on targets such as CD4+ Th2 cells, ILC2, and mast cells. Notably, IL-33 has a distinct N-terminal domain that mediates nuclear localization and chromatin binding. However, a defined in vivo cell-intrinsic role for IL-33 has not been established. We identified IL-33 expression in the nucleus of progenitor B (pro-B) and large precursor B cells in the bone marrow, an expression pattern unique to B cells among developing lymphocytes. The IL-33 receptor ST2 was not expressed within the developing B cell lineage at either the transcript or protein level. RNA sequencing analysis of wild-type and IL-33-deficient pro-B and large precursor B cells revealed a unique, IL-33-dependent transcriptional profile wherein IL-33 deficiency led to an increase in E2F targets, cell cycle genes, and DNA replication and a decrease in the p53 pathway. Using mixed bone marrow chimeric mice, we demonstrated that IL-33 deficiency resulted in an increased frequency of developing B cells via a cell-intrinsic mechanism starting at the pro-B cell stage paralleling IL-33 expression. Finally, IL-33 was detectable during early B cell development in humans and IL33 mRNA expression was decreased in B cell chronic lymphocytic leukemia samples compared with healthy controls. Collectively, these data establish a cell-intrinsic, ST2-independent role for IL-33 in early B cell development.


Asunto(s)
Linfocitos B/inmunología , Interleucina-33/inmunología , Adulto , Animales , Replicación del ADN/inmunología , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/inmunología , Masculino , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN Mensajero/inmunología , Transducción de Señal/inmunología , Células Th2/inmunología , Proteína p53 Supresora de Tumor/inmunología
20.
Int J Radiat Oncol Biol Phys ; 104(5): 1165-1174, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039423

RESUMEN

PURPOSE: Radiation therapy is an essential intervention used in the treatment of more than half of cancer patients. With the increasing use of hypofractionated radiation regimens, concurrent use of radiation and chemotherapy, targeted agents and immunotherapy, the risk of radiation-induced toxicities is increased. However, much remains unknown about the molecular underpinnings responsible for radiation-induced toxicity. MicroRNA (miRNA) are small, non-coding RNA involved in post-transcriptional regulation of gene expression. miR-21 is an oncomiR that is dysregulated in a significant fraction of human malignancies, and its overexpression is linked to poor overall survival, chemoresistance, and radioresistance in several human cancers. However, the contribution of miR-21 in governing radiation sensitivity in normal, untransformed cells, and the impact of silencing this miRNA in normal tissues remains largely unexplored. MATERIALS AND METHODS: miR-21 levels were evaluated in tissues by qRT-PCR without and after total body irradiation (TBI). Mice lacking miR-21 were genetically engineered, subjected to TBI, and monitored for survival. Hematopoietic stem and progenitor cell (HSPC) numbers and function were assessed using flow cytometry, histology, complete blood cell counts, and bone marrow transplantation. RESULTS: miR-21 expression was increased in radiosensitive tissues, but not in radioinsensitive tissues following TBI in wild-type mice, suggesting it may have a critical function in the normal tissue response to irradiation. Compared to wild-type mice, mice lacking one or both alleles of miR-21 showed reduced numbers of HSPCs and increased sensitivity to an LD50/30 dose of TBI with evidence of bone marrow failure. Transplantation of wild-type bone marrow into irradiated miR-21-deficient mice rescued the mice from death. CONCLUSIONS: Our data identify miR-21 as a critical component of HSPC viability and essential for bone marrow recovery following irradiation. Further investigation is warranted to determine whether miR-21 can be used to stratify patients at risk for hematopoietic toxicity following irradiation.


Asunto(s)
Supervivencia Celular/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , MicroARNs/metabolismo , Tolerancia a Radiación , Animales , Causas de Muerte , Femenino , Ingeniería Genética , Trasplante de Células Madre Hematopoyéticas , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Exposición a la Radiación , Regulación hacia Arriba , Irradiación Corporal Total
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA