RESUMEN
Sex and gender-biological and social constructs-significantly impact the prevalence of protective and risk factors, influencing the burden of Alzheimer's disease (AD; amyloid beta and tau) and other pathologies (e.g., cerebrovascular disease) which ultimately shape cognitive trajectories. Understanding the interplay of these factors is central to understanding resilience and resistance mechanisms explaining maintained cognitive function and reduced pathology accumulation in aging and AD. In this narrative review, the ADDRESS! Special Interest Group (Alzheimer's Association) adopted a multidisciplinary approach to provide the foundations and recommendations for future research into sex- and gender-specific drivers of resilience, including a sex/gender-oriented review of risk factors, genetics, AD and non-AD pathologies, brain structure and function, and animal research. We urge the field to adopt a sex/gender-aware approach to resilience to advance our understanding of the intricate interplay of biological and social determinants and consider sex/gender-specific resilience throughout disease stages. HIGHLIGHTS: Sex differences in resilience to cognitive decline vary by age and cognitive status. Initial evidence supports sex-specific distinctions in brain pathology. Findings suggest sex differences in the impact of pathology on cognition. There is a sex-specific change in resilience in the transition to clinical stages. Gender and sex factors warrant study: modifiable, immune, inflammatory, and vascular.
Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Caracteres Sexuales , Humanos , Enfermedad de Alzheimer/patología , Envejecimiento/fisiología , Femenino , Masculino , Cognición/fisiología , Factores Sexuales , Encéfalo/patología , Factores de Riesgo , Animales , Disfunción Cognitiva , Resiliencia PsicológicaRESUMEN
INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Endofenotipos , Predisposición Genética a la Enfermedad/genética , Cognición , Trastornos de la Memoria/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
BACKGROUND: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales = 11,942; Nfemales = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.
Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Cognitivo , Humanos , Masculino , Femenino , Estudio de Asociación del Genoma Completo , Enfermedad de Alzheimer/genética , Cognición , Caracteres SexualesRESUMEN
Importance: Sex differences are established in associations between apolipoprotein E (APOE) ε4 and cognitive impairment in Alzheimer disease (AD). However, it is unclear whether sex-specific cognitive consequences of APOE are consistent across races and extend to the APOE ε2 allele. Objective: To investigate whether sex and race modify APOE ε4 and ε2 associations with cognition. Design, Setting, and Participants: This genetic association study included longitudinal cognitive data from 4 AD and cognitive aging cohorts. Participants were older than 60 years and self-identified as non-Hispanic White or non-Hispanic Black (hereafter, White and Black). Data were previously collected across multiple US locations from 1994 to 2018. Secondary analyses began December 2021 and ended September 2022. Main Outcomes and Measures: Harmonized composite scores for memory, executive function, and language were generated using psychometric approaches. Linear regression assessed interactions between APOE ε4 or APOE ε2 and sex on baseline cognitive scores, while linear mixed-effect models assessed interactions on cognitive trajectories. The intersectional effect of race was modeled using an APOE × sex × race interaction term, assessing whether APOE × sex interactions differed by race. Models were adjusted for age at baseline and corrected for multiple comparisons. Results: Of 32â¯427 participants who met inclusion criteria, there were 19â¯007 females (59%), 4453 Black individuals (14%), and 27â¯974 White individuals (86%); the mean (SD) age at baseline was 74 years (7.9). At baseline, 6048 individuals (19%) had AD, 4398 (14%) were APOE ε2 carriers, and 12â¯538 (38%) were APOE ε4 carriers. Participants missing APOE status were excluded (n = 9266). For APOE ε4, a robust sex interaction was observed on baseline memory (ß = -0.071, SE = 0.014; P = 9.6 × 10-7), whereby the APOE ε4 negative effect was stronger in females compared with males and did not significantly differ among races. Contrastingly, despite the large sample size, no APOE ε2 × sex interactions on cognition were observed among all participants. When testing for intersectional effects of sex, APOE ε2, and race, an interaction was revealed on baseline executive function among individuals who were cognitively unimpaired (ß = -0.165, SE = 0.066; P = .01), whereby the APOE ε2 protective effect was female-specific among White individuals but male-specific among Black individuals. Conclusions and Relevance: In this study, while race did not modify sex differences in APOE ε4, the APOE ε2 protective effect could vary by race and sex. Although female sex enhanced ε4-associated risk, there was no comparable sex difference in ε2, suggesting biological pathways underlying ε4-associated risk are distinct from ε2 and likely intersect with age-related changes in sex biology.
Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Anciano , Femenino , Humanos , Masculino , Alelos , Enfermedad de Alzheimer/genética , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Cognición , Función Ejecutiva , GenotipoRESUMEN
Late-onset Alzheimer's disease (LOAD) is a polygenic disorder with a long prodromal phase, making early diagnosis challenging. Twin studies estimate LOAD as 60-80% heritable, and while common genetic variants can account for 30% of this heritability, nearly 70% remains "missing". Polygenic risk scores (PRS) leverage combined effects of many loci to predict LOAD risk, but often lack sensitivity to preclinical disease changes, limiting clinical utility. Our group has built and published on a resilience phenotype to model better-than-expected cognition give amyloid pathology burden and hypothesized it may assist in preclinical polygenic risk prediction. Thus, we built a LOAD PRS and a resilience PRS and evaluated both in predicting cognition in a dementia-free cohort (N=254). The LOAD PRS had a significant main effect on baseline memory (ß=-0.18, P=1.68E-03). Both the LOAD PRS (ß=-0.03, P=1.19E-03) and the resilience PRS (ß=0.02, P=0.03) had significant main effects on annual memory decline. The resilience PRS interacted with CSF Aß on baseline memory (ß=-6.04E-04, P=0.02), whereby it predicted baseline memory among Aß+ individuals (ß=0.44, P=0.01) but not among Aß- individuals (ß=0.06, P=0.46). Excluding APOE from PRS resulted in mainly LOAD PRS associations attenuating, but notably the resilience PRS interaction with CSF Aß and selective prediction among Aß+ individuals was consistent. Although the resilience PRS is currently somewhat limited in scope from the phenotype's cross-sectional nature, our results suggest that the resilience PRS may be a promising tool in assisting in preclinical disease risk prediction among dementia-free and Aß+ individuals, though replication and fine-tuning are needed.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Estudios Transversales , Biología Computacional , Factores de RiesgoRESUMEN
Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, ß (females) = 0.08, P (females) = 5.76 × 10-09, ß (males) = -0.01, P(males) = 0.70, ß (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.