Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
RSC Adv ; 14(31): 22618-22626, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39027036

RESUMEN

Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials to impact such applications, it is crucial to develop a reliable and scalable synthesis process that is compatible with modern industrial manufacturing methods. Metal-organic chemical vapor deposition (MOCVD) offers an ideal solution to produce TMDs, due to its compatibility with large-scale production, precise layer control, and high material purity. Optimization of MOCVD protocols is necessary for effective TMD synthesis and integration into mainstream technologies. Additionally, improvements in metrology are necessary to measure the quality of the fabricated samples more accurately. In this work, we study MOCVD of wafer-scale molybdenum disulfide (MoS2) utilizing two common chalcogen precursors, H2S and DTBS. We then develop a metrology platform for wafer scale samples quality assessment. For this, the coalesced films were characterized using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy. We then correlate the structural analysis of these grown films with electrical performance by using aerosol jet printing to fabricate van der Pauw test structures and assess sheet resistance.

2.
ACS Appl Electron Mater ; 6(2): 748-760, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38435803

RESUMEN

Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution. Nickel is an attractive high-temperature packaging material due to its electrical conductivity, magnetism, and corrosion resistance. In this work, we synthesized nickel nanoparticles and formulated an AJP ink, which was printed on various material surfaces. Thermal sintering experiments were performed on the samples to explore the redox behavior and to optimize the electrical performance of the devices. The nickel devices were heated to failure under an argon atmosphere, which was marked by a loss of reflectance and electrical properties due to the dewetting of the films. Additionally, a reduction mechanism was observed from these studies, which resembled that of nucleation and coalescence. Finally, multilayer graphene was grown on a custom-printed nickel thin film using chemical vapor deposition (CVD), establishing a fully additive manufacturing route to patterned graphene.

3.
ACS Mater Au ; 4(1): 65-73, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38221917

RESUMEN

Conductive and biofriendly gold nanomaterial inks are highly desirable for printed electronics, biosensors, wearable electronics, and electrochemical sensor applications. Here, we demonstrate the scalable synthesis of stable gold nanoparticle inks with low-temperature sintering using simple chemical processing steps. Multiprinter compatible aqueous gold nanomaterial inks were formulated, achieving resistivity as low as ∼10-6 Ω m for 400 nm thick films sintered at 250 °C. Printed lines with a resolution of <20 µm and minimal overspray were obtained using an aerosol jet printer. The resistivity of the printed patterns reached ∼9.59 ± 1.2 × 10-8 Ω m after sintering at 400 °C for 45 min. Our aqueous-formulated gold nanomaterial inks are also compatible with inkjet printing, extending the design space and manufacturability of printed and flexible electronics where metal work functions and chemically inert films are important for device applications.

4.
ACS Omega ; 9(1): 1614-1619, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222600

RESUMEN

Pebble beds have been employed in thermal storage and energy systems, where they are typically used to promote heat exchange in high-temperature environments. Understanding the heat conduction of the entire pebble bed could aid in the material selection of the pebbles themselves and structural components, system design, and safety monitoring. However, the thermal conductivity of pebble beds can change significantly near geometric boundaries. Using a complex multilayer analytical model in conjunction with a line source probe, we found a substantial increase in the thermal conductivity of a sintered bauxite pebble bed in the near-wall region (7.6 W m-1 K-1) compared to the bulk (0.59 W m-1 K-1). We investigated this difference by comparing porosity results, acquired with micro-CT, of 33.18 and 33.31% at approximately one pebble width surrounding the probe (near-wall) and the bulk of the pebble bed, suggesting that the thermal conductivity is largely altered by thermal contact resistance in the near-wall regime.

5.
ACS Appl Bio Mater ; 6(9): 3717-3725, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37655758

RESUMEN

Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues, such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular microenvironment of the target tissue. Visualization and analysis of potential 3D porous scaffolds as well as the associated cell growth and proliferation characteristics present additional problems. This is particularly challenging for opaque scaffolds using standard optical imaging techniques. Here, we use graphene foam (GF) as a 3D porous biocompatible substrate, which is scalable, reproducible, and a suitable environment for ATDC5 cell growth and chondrogenic differentiation. ATDC5 cells are cultured, maintained, and stained with a combination of fluorophores and gold nanoparticles to enable correlative microscopic characterization techniques, which elucidate the effect of GF properties on cell behavior in a 3D environment. Most importantly, the staining protocol allows for direct imaging of cell growth and proliferation on opaque scaffolds using X-ray MicroCT, including imaging growth of cells within the hollow GF branches, which is not possible with standard fluorescence and electron microscopy techniques.


Asunto(s)
Grafito , Nanopartículas del Metal , Oro , Ingeniería de Tejidos , Técnicas de Cultivo Tridimensional de Células , Imagen Óptica
6.
Catalysts ; 12(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36405766

RESUMEN

Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)2(amine)x] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used. Powders prepared at 65 °C with rapid precipitation yielded particles with minimal morphology differences, but particle size was dependent on the precursor used. The smallest particles were produced using precursors that yielded crystals with low aspect ratios during high-temperature synthesis. Particles produced during rapid synthesis had sizes ranging from 21-45 nm. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, BET, and diffuse reflectance. The materials prepared using precursors with less-volatile amines were found to retain more organic material than ZnO produced using precursors with more volatile amines. The amount of organic material associated with the nanoparticles influenced the photocatalytic activity of the ZnO, with powders containing less organic material producing faster rate constants for the decolorizing of malachite green solutions under ultraviolet illumination, independent of particle size. [Zn(acetate)2(hydrazine)2] produced ZnO with the fastest rate constant and was recycled five times for dye degradation studies that revealed minimal to no reduction in catalytic efficiency.

7.
Pharmaceutics ; 14(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35214054

RESUMEN

This review provides a summary of recent progress in the development of different nano-platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In particular, this review focuses on various methods in which photosensitizers and chemotherapeutic agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-based materials, liposomes, dendrimers, polymers, metal-organic frameworks, nano emulsions, and biologically derived nanocarriers. Many studies have demonstrated various benefits from using these nanocarriers including enhanced water solubility, stability, longer circulation times, and higher accumulation of therapeutic agents/photosensitizers at tumor sites. This review also describes novel approaches from different research groups that utilize various targeting strategies to increase treatment efficacy through simultaneous photodynamic therapy and chemotherapy.

8.
Adv Mater Technol ; 5(11)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33738334

RESUMEN

Thermoelectric generators are an environmentally friendly and reliable solid-state energy conversion technology. Flexible and low-cost thermoelectric generators are especially suited to power flexible electronics and sensors using body heat or other ambient heat sources. Bismuth telluride based thermoelectric materials exhibit their best performance near room temperature making them an ideal candidate to power wearable electronics and sensors using body heat. In this report Bi2Te3 thin films are deposited on a flexible polyimide substrate using low-cost and scalable manufacturing methods. The synthesized Bi2Te3 nanocrystals have a thickness of 35 ± 15 nm and a lateral dimension of 692 ± 186 nm. Thin films fabricated from these nanocrystals exhibit a peak power factor of 0.35 mW/m·K2 at 433 K, which is among the highest reported values for flexible thermoelectric films. In order to evaluate the flexibility of the thin films, static and dynamic bending tests were performed while monitoring the change in electrical resistivity. After 1000 bending cycles over a 50mm ROC, the change in electrical resistance of the film was 23%. Using our Bi2Te3 solutions, we demonstrated the ability to print thermoelectric thin films with an aerosol jet printer, highlighting the potential of additive manufacturing techniques for fabricating flexible thermoelectric generators.

9.
ACS Appl Mater Interfaces ; 11(28): 24933-24944, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31173687

RESUMEN

Many promising attributes of ZnO nanoparticles (nZnO) have led to their utilization in numerous electronic devices and biomedical technologies. nZnO fabrication methods can create a variety of intrinsic defects that modulate the properties of nZnO, which can be exploited for various purposes. Here we developed a new synthesis procedure that controls certain defects in pure nZnO that are theorized to contribute to the n-type conductivity of the material. Interestingly, this procedure created defects that reduced the nanoparticle band gap to ∼3.1 eV and generated strong emissions in the violet to blue region while minimizing the defects responsible for the more commonly observed broad green emissions. Several characterization techniques including thermogravimetric analysis, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, Raman, photoluminescence, and inductively coupled plasma mass spectrometry were employed to verify the sample purity, assess how modifications in the synthesis procedure affect the various defects states, and understand how these alterations impact the physical properties. Since the band gap significantly decreased and a relatively narrow visible emissions band was created by these defects, we investigated utilizing these new nZnO for bioimaging applications using traditional fluorescent microscopy techniques. Although most nZnO generally require UV excitation sources to produce emissions, we demonstrate that reducing the band gap allows for a 405 nm laser to sufficiently excite the nanoparticles to detect their emissions during live-cell imaging experiments using a confocal microscope. This work lays the foundation for the use of these new nZnO in various bioimaging applications and enables researchers to investigate the interactions of pure nZnO with cells through fluorescence-based imaging techniques.


Asunto(s)
Nanopartículas/química , Óxido de Zinc , Humanos , Células Jurkat , Microscopía Fluorescente , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Óxido de Zinc/química , Óxido de Zinc/farmacología
10.
Environ Sci Nano ; 5(2): 572-588, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29479436

RESUMEN

ZnO nanoparticles (nZnO) are commonly used in nanotechnology applications despite their demonstrated cytotoxicity against multiple cell types. This underscores the significant need to determine the physicochemical properties that influence nZnO cytotoxicity. In this study, we analyzed six similarly sized nZnO formulations, along with SiO2-coated nZnO, bulk ZnO and ZnSO4 as controls. Four of the nZnO samples were synthesized using various wet chemical methods, while three employed high-temperature flame spray pyrolysis (FSP) techniques. X-ray diffraction and optical analysis demonstrated the lattice parameters and electron band gap of the seven nZnO formulations were similar. However, electrophoretic mobility measures, hydrodynamic size, photocatalytic rate constants, dissolution potential, reactive oxygen species (ROS) production and, more importantly, the cytotoxicity of the variously synthesized nZnO towards Jurkat leukemic and primary CD4+ T cells displayed major differences. Surface structure analysis using FTIR, X-ray photoelectron spectroscopies (XPS) and dynamic light scattering (DLS) revealed significant differences in the surface-bound chemical groups and the agglomeration tendencies of the samples. The wet chemical nZnO, with higher cationic surface charge, faster photocatalytic rates, increased extracellular dissolution and ROS generation demonstrated greater cytotoxicity towards both cell types than those made with FSP techniques. Furthermore, principal component analysis (PCA) suggests that the synthesis procedure employed influences which physicochemical properties contribute more to the cytotoxic response. These results suggest that the synthesis approach results in unique surface chemistries and can be a determinant of cellular cytotoxicity and oxidative stress responses.

11.
J Nanobiotechnology ; 15(1): 90, 2017 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-29246155

RESUMEN

BACKGROUND: The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport mechanisms, hence enabling contributions to nanotoxicity by affecting key biological activities dependent on transmembrane transport. In this line of inquiry, we investigated the effects of charged nanoparticles (NPs) on the transport properties of lysenin, a pore-forming toxin that shares fundamental features with ion channels such as regulation and high transport rate. RESULTS: The macroscopic conductance of lysenin channels greatly diminished in the presence of cationic ZnO NPs. The inhibitory effects were asymmetrical relative to the direction of the electric field and addition site, suggesting electrostatic interactions between ZnO NPs and a binding site. Similar changes in the macroscopic conductance were observed when lysenin channels were reconstituted in neutral lipid membranes, implicating protein-NP interactions as the major contributor to the reduced transport capabilities. In contrast, no inhibitory effects were observed in the presence of anionic SnO2 NPs. Additionally, we demonstrate that inhibition of ion transport is not due to the dissolution of ZnO NPs and subsequent interactions of zinc ions with lysenin channels. CONCLUSION: We conclude that electrostatic interactions between positively charged ZnO NPs and negative charges within the lysenin channels are responsible for the inhibitory effects on the transport of ions. These interactions point to a potential mechanism of cytotoxicity, which may not require NP internalization.


Asunto(s)
Nanopartículas del Metal/química , Toxinas Biológicas/metabolismo , Óxido de Zinc/química , Conductividad Eléctrica , Activación del Canal Iónico/fisiología , Membrana Dobles de Lípidos/química , Compuestos de Estaño/química , Toxinas Biológicas/química
12.
Chem Res Toxicol ; 30(8): 1641-1651, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28693316

RESUMEN

Zinc oxide nanoparticles (nZnO) are one of the most highly produced nanomaterials and are used in numerous applications including cosmetics and sunscreens despite reports demonstrating their cytotoxicity. Dissolution is viewed as one of the main sources of nanoparticle (NP) toxicity; however, dissolution studies can be time-intensive to perform and complicated by issues such as particle separation from solution. Our work attempts to overcome some of these challenges by utilizing new methods using UV/vis and fluorescence spectroscopy to quantitatively assess nZnO dissolution in various biologically relevant solutions. All biological buffers tested induce rapid dissolution of nZnO. These buffers, including HEPES, MOPS, and PIPES, are commonly used in cell culture media, cellular imaging solutions, and to maintain physiological pH. Additional studies using X-ray diffraction, FT-IR, X-ray photoelectron spectroscopy, ICP-MS, and TEM were performed to understand how the inclusion of these nonessential media components impacts the behavior of nZnO in RPMI media. From these assessments, we demonstrate that HEPES causes increased dissolution kinetics, boosts the conversion of nZnO into zinc phosphate/carbonate, and, interestingly, alters the structural morphology of the complex precipitates formed with nZnO in cell culture conditions. Cell viability experiments demonstrated that the inclusion of these buffers significantly decrease the viability of Jurkat leukemic cells when challenged with nZnO. This work demonstrates that biologically relevant buffering systems dramatically impact the dynamics of nZnO including dissolution kinetics, morphology, complex precipitate formation, and toxicity profiles.


Asunto(s)
Medios de Cultivo/química , Nanopartículas del Metal/química , Óxido de Zinc/química , Tampones (Química) , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Células Jurkat , Cinética , Espectrometría de Masas , Nanopartículas del Metal/toxicidad , Microscopía Confocal , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Espectroscopía de Fotoelectrones , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
13.
ACS Biomater Sci Eng ; 2(8): 1234-1241, 2016 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28164151

RESUMEN

This study demonstrates the growth and differentiation of C2C12 myoblasts into functional myotubes on 3-dimensional graphene foam bioscaffolds. Specifically, we establish both bare and laminin coated graphene foam as a biocompatible platform for muscle cells and identify that electrical coupling stimulates cell activity. Cell differentiation and functionality is determined by the expression of myotube heavy chain protein and Ca2+ fluorescence, respectively. Further, our data show that the application of a pulsed electrical stimulus to the graphene foam initiates myotube contraction and subsequent localized substrate movement of over 100 micrometers. These findings will further the development of advanced 3-dimensional graphene platforms for therapeutic applications and tissue engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA