Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12505, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822052

RESUMEN

Photocatalysts of TiO2-CuO coupled with 30% graphene oxide (GO) were hydrothermally fabricated, which varied the TiO2 to CuO weight ratios to 1:4, 1:2, 1:1, 2:1 and 4:1 and reduced to form TiO2-CuO/reduced graphene oxide (rGO) photocatalysts. They were characterized using XRD, TEM, SEM, XPS, Raman, and DRS technologies. TiO2-CuO composites and TiO2-CuO/GO degrade methylene blue when persulfate ions are present. Persulfate concentration ranged from 1, 2, 4 to 8 mmol/dm-3 in which the highest activity of 4.4 × 10-2 and 7.35 × 10-2 min-1 was obtained with 4 mmol/dm-3 for TiO2-CuO (1:4) and TiO2-CuO/GO (1:1), respectively. The presence of EDTA and isopropyl alcohol reduced the photodegradation. TiO2-CuO coupled with rGO coagulates methylene blue in the presence of persulfate ions and such coagulation is independent of light. The catalyst dosage and the concentration of the dye were varied for the best-performing samples. The antibacterial activity of the synthesized samples was evaluated against the growth of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumonia. Ti:Cu (1:2)-GO and Ti:Cu (1:4)-GO had the highest antibacterial activity against K. pneumoniae (16.08 ± 0.14 mm), P. aeruginosa (22.33 ± 0.58 mm), E. coli (16.17 ± 0.29 mm) and S. aureus (16.08 ± 0.88).


Asunto(s)
Antibacterianos , Cobre , Grafito , Azul de Metileno , Titanio , Grafito/química , Titanio/química , Titanio/farmacología , Cobre/química , Cobre/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Catálisis , Azul de Metileno/química , Azul de Metileno/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Fotólisis , Sulfatos/química
2.
Sci Rep ; 14(1): 1293, 2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221550

RESUMEN

Polyethyleneglycol-coated biocompatible CuO-ZnO nanocomposites were fabricated hydrothermally varying Zn:Cu ratios as 1:1, 2:1, and 1:2, and their antibacterial activity was determined through the well diffusion method against the Gram-negative Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and the Gram-positive Staphylococcus aureus. The minimum inhibitory concentration and the minimum bactericidal concentration values of the synthesized samples were determined. Subsequently, the time synergy kill assay was performed to elucidate the nature of the overall inhibitory effect against the aforementioned bacterial species. The mean zone of inhibition values for all four samples are presented. The inhibitory effect increased with increasing concentration of the nanocomposite (20, 40 and 60 mg/ml) on all the bacterial species except for S. aureus. According to the MBC/MIC ratio, ZnO was found to be bacteriostatic for E. coli and P. aeruginosa, and bactericidal for S. aureus and K. pneumoniae. Zn:Cu 2:1 was bactericidal on all bacterial species. A bacteriostatic effect was observed on E. coli and P. aeruginosa in the presence of Zn:Cu 1:1 whereas, it showed a bactericidal effect on S. aureus and K. pneumoniae. Zn:Cu 1:2 exhibited a bacteriostatic effect on E. coli while a bactericidal effect was observed for E. coli, P. aeruginosa, and K. pneumoniae. The metal oxide nanocomposites were found to be more sensitive towards the Gram-positive strain than the Gram-negative strains. Further, all the nanocomposites possess anti-oxidant activity as shown by the DPPH assay.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Staphylococcus aureus , Óxido de Zinc/farmacología , Óxido de Zinc/química , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Pruebas de Sensibilidad Microbiana , Nanocompuestos/química , Klebsiella pneumoniae , Pseudomonas aeruginosa
3.
Molecules ; 28(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37049917

RESUMEN

Fabrication of chitosan and ilmenite sand-based novel photocatalysts through the catalytic graphitization of chitosan is reported. Nanocomposites consisted of TiO2, Fe2O3 and Fe nanoparticles dispersed on a nitrogen-doped graphitic carbon framework. The surface area, pore volume and macropore structure of the carbon matrix is disturbed by the heterogeneously distributed nanoparticles. The extent of graphitization expanded with increasing metal loading as indicated by variation in the ID/IG ratio. The nanomaterial's surface consists of Fe3+ and Ti4+, and graphitic, pyridinic and pyrrolic nitrogen were found in the carbon matrix. The band gap values of the composites varied in the 2.06-2.26 eV range. The photocatalytic activity of the synthesized nanomaterials was determined, and the highest rate constant for the photodegradation of methylene blue under sunlight was 4.4 × 10-3 min-1, which resulted with 10 mg/L MB and 25 mg of the best-performing catalyst. The rate constant rose with increasing concentrations of persulfate added to the medium. The rate constant greatly diminished with the addition of isopropyl alcohol as it scavenged hydroxyl radicals. The presence of co-pollutants including Pb2+, rhodamine B, PO43- and Cl- curtailed the rate of reaction. The activity reduced with an increasing number of uses of the catalyst.

4.
Materials (Basel) ; 16(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903188

RESUMEN

Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA