Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Revista
Intervalo de año de publicación
1.
Foods ; 13(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731705

RESUMEN

Millet is a small-seeded cereal crop with big potential. There are many different cultivars of proso millet (Panicum miliaceum L.) with different characteristics, bringing forth the issue of sorting which are important for growers, processors, and consumers. Current methods of grain cultivar detection and classification are subjective, destructive, and time-consuming. Therefore, there is a need to develop nondestructive methods for sorting the cultivars of proso millet. In this study, the feasibility of using near-infrared (NIR) hyperspectral imaging (900-1700 nm) to discriminate between different cultivars of proso millet seeds was evaluated. A total of 5000 proso millet seeds were randomly obtained and investigated from the ten most popular cultivars in the United States, namely Cerise, Cope, Earlybird, Huntsman, Minco, Plateau, Rise, Snowbird, Sunrise, and Sunup. To reduce the large dimensionality of the hyperspectral imaging, principal component analysis (PCA) was applied, and the first two principal components were used as spectral features for building the classification models because they had the largest variance. The classification performance showed prediction accuracy rates as high as 99% for classifying the different cultivars of proso millet using a Gradient tree boosting ensemble machine learning algorithm. Moreover, the classification was successfully performed using only 15 and 5 selected spectral features (wavelengths), with an accuracy of 98.14% and 97.6%, respectively. The overall results indicate that NIR hyperspectral imaging could be used as a rapid and nondestructive method for the classification of proso millet seeds.

2.
Foods ; 11(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35010134

RESUMEN

Codling moth (CM) (Cydia pomonella L.), a devastating pest, creates a serious issue for apple production and marketing in apple-producing countries. Therefore, effective nondestructive early detection of external and internal defects in CM-infested apples could remarkably prevent postharvest losses and improve the quality of the final product. In this study, near-infrared (NIR) hyperspectral reflectance imaging in the wavelength range of 900-1700 nm was applied to detect CM infestation at the pixel level for three organic apple cultivars, namely Gala, Fuji and Granny Smith. An effective region of interest (ROI) acquisition procedure along with different machine learning and data processing methods were used to build robust and high accuracy classification models. Optimal wavelength selection was implemented using sequential stepwise selection methods to build multispectral imaging models for fast and effective classification purposes. The results showed that the infested and healthy samples were classified at pixel level with up to 97.4% total accuracy for validation dataset using a gradient tree boosting (GTB) ensemble classifier, among others. The feature selection algorithm obtained a maximum accuracy of 91.6% with only 22 selected wavelengths. These findings indicate the high potential of NIR hyperspectral imaging (HSI) in detecting and classifying latent CM infestation in apples of different cultivars.

3.
Foods ; 9(7)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674380

RESUMEN

In the last two decades, food scientists have attempted to develop new technologies that can improve the detection of insect infestation in fruits and vegetables under postharvest conditions using a multitude of non-destructive technologies. While consumers' expectations for higher nutritive and sensorial value of fresh produce has increased over time, they have also become more critical on using insecticides or synthetic chemicals to preserve food quality from insects' attacks or enhance the quality attributes of minimally processed fresh produce. In addition, the increasingly stringent quarantine measures by regulatory agencies for commercial import-export of fresh produce needs more reliable technologies for quickly detecting insect infestation in fruits and vegetables before their commercialization. For these reasons, the food industry investigates alternative and non-destructive means to improve food quality. Several studies have been conducted on the development of rapid, accurate, and reliable insect infestation monitoring systems to replace invasive and subjective methods that are often inefficient. There are still major limitations to the effective in-field, as well as postharvest on-line, monitoring applications. This review presents a general overview of current non-destructive techniques for the detection of insect damage in fruits and vegetables and discusses basic principles and applications. The paper also elaborates on the specific post-harvest fruit infestation detection methods, which include principles, protocols, specific application examples, merits, and limitations. The methods reviewed include those based on spectroscopy, imaging, acoustic sensing, and chemical interactions, with greater emphasis on the noninvasive methods. This review also discusses the current research gaps as well as the future research directions for non-destructive methods' application in the detection and classification of insect infestation in fruits and vegetables.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA