Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int Immunol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051675

RESUMEN

Toxoplasma gondii (T. gongii) is a zoonotic protozoan parasite that causes congenital toxoplasmosis, including fetal death, abortion, stillbirth, morphological abnormalities, and premature birth. Primary T. gondii infection in pregnant women results in congenital toxoplasmosis. C-C chemokine receptor (CCR) 2 is reportedly a critical host defense factor against T. gondii infection. However, details of the role of CCR2 in the host immune response to T. gondii in congenital toxoplasmosis remain unclear. Here, we infected pregnant CCR2-deficient mice with T. gondii, resulting in stillbirth, embryonic resorption, fetal morphological abnormalities, and preterm delivery at significantly higher rates than those in pregnant wild-type mice. Consistent with the severity of abnormal pregnancy, a large area of placental hemorrhage and a large number of T. gondii infections around the hemorrhagic area were observed in the placentas of CCR2-deficient mice. In addition, the accumulation of inflammatory monocytes in the placenta was reduced in CCR2-deficient mice during infection. We further confirmed that the adoptive transfer of inflammatory monocytes collected from wild-type mice into T. gondii-infected pregnant CCR2-deficient mice effectively suppressed placental damage and abnormal pregnancy. Collectively, CCR2 contributes to pregnancy maintenance by regulating the migration of inflammatory monocytes into the placenta of T. gondii-infected pregnant mice.

2.
Int Immunol ; 36(5): 241-256, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38153198

RESUMEN

Multiple sclerosis (MS) is an incurable chronic autoimmune disease affecting the central nervous system (CNS). Although IL-17-producing helper T (Th17) cells are thought to be one of the exacerbating factors in MS, the underlying pathogenic mechanism is incompletely understood. TNF receptor-associated factor 6 (TRAF6) deficient T cells exhibited enhanced Th17 cell differentiation, however, the physiological relevance of TRAF6 in T cells remains unknown. Here, we induced experimental autoimmune encephalomyelitis (EAE) in T cell-specific TRAF6 deficient (TRAF6ΔT) mice to investigate the role of TRAF6 in T cells during the course of MS using an EAE model. Although Th17 cell differentiation was enhanced in TRAF6ΔT mice, mutant mice were resistant to EAE. In contrast, TRAF6 loss did not affect regulatory T-cell differentiation. Consistent with the severity of EAE, a small number of infiltrating T cells and a small area of demyelination were observed in the CNS of TRAF6ΔT mice. Moreover, myelin oligodendrocyte glycoprotein-induced IL-17 production in TRAF6-deficient T cells was significantly suppressed. We further confirmed lower levels of CD69 and granulocyte-macrophage colony-stimulating factor in Th17 cells of TRAF6ΔT mice than in wild-type mice. In contrast, the expression of IL-10 and cytotoxic T-lymphocyte-associated protein 4 in T cells was significantly elevated in the absence of TRAF6 because of enhanced T-cell receptor signaling. Collectively, TRAF6 signaling in T cells contributes to the pathogenesis of EAE by regulating the pathogenicity and autoantigen reactivity of Th17 cells.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Células Th17 , Factor 6 Asociado a Receptor de TNF/metabolismo
3.
Biochem Biophys Res Commun ; 669: 103-112, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37269592

RESUMEN

Tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role in the induction of inflammatory responses not only in innate immune cells but also in non-immune cells, leading to the activation of adaptive immunity. Signal transduction mediated by TRAF6, along with its upstream molecule MyD88 in intestinal epithelial cells (IECs) is crucial for the maintenance of mucosal homeostasis following inflammatory insult. The IEC-specific TRAF6-deficient (TRAF6ΔIEC) and MyD88-deficient (MyD88ΔIEC) mice exhibit increased susceptibility to DSS-induced colitis, emphasizing the critical role of this pathway. Moreover, MyD88 also plays a protective role in Citrobacter rodentium (C. rodentium) infection-induced colitis. However, its pathological role of TRAF6 in infectious colitis remains unclear. To investigate the site-specific roles of TRAF6 in response to enteric bacterial pathogens, we infected TRAF6ΔIEC and dendritic cell (DC)-specific TRAF6-deficient (TRAF6ΔDC) mice with C. rodentium and found that the pathology of infectious colitis was exacerbated with significantly decreased survival rates in TRAF6ΔDC mice, but not in TRAF6ΔIEC mice, compared to those in control mice. TRAF6ΔDC mice showed increased bacterial burdens, marked disruption of epithelial and mucosal structures with increased infiltration of neutrophils and macrophages, and elevated cytokine levels in the colon at the late stages of infection. The frequencies of IFN-γ producing Th1 cells and IL-17A producing Th17 cells in the colonic lamina propria were significantly reduced in TRAF6ΔDC mice. Finally, we demonstrated that TRAF6-deficient DCs failed to produce IL-12 and IL-23 in response to C. rodentium stimulation, and to induce both Th1 and Th17 cells in vitro. Thus, TRAF6 signaling in DCs, but not in IECs, protects against colitis induced by C. rodentium infection by producing IL-12 and IL-23 that induce Th1 and Th17 responses in the gut.


Asunto(s)
Citrobacter rodentium , Colitis , Animales , Ratones , Citrobacter rodentium/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Células Th17 , Colitis/patología , Transducción de Señal , Mucosa Intestinal/metabolismo , Colon/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Ratones Endogámicos C57BL , Células TH1/metabolismo
4.
Genome Biol Evol ; 15(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36852863

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, and scientists around the world are currently studying the virus intensively in order to fight against the on-going pandemic of the virus. To do so, SARS-CoV-2 is typically grown in the lab to generate viral stocks for various kinds of experimental investigations. However, accumulating evidence suggests that such viruses often undergo cell culture adaptation. Here, we systematically explored cell culture adaptation of two SARS-CoV-2 variants, namely the B.1.36.16 variant and the AY.30 variant, a sub lineage of the B.1.617.2 (Delta) variant, propagated in three different cell lines, including Vero E6, Vero E6/TMPRSS2, and Calu-3 cells. Our analyses detected numerous potential cell culture adaptation changes scattering across the entire virus genome, many of which could be found in naturally circulating isolates. Notable ones included mutations around the spike glycoprotein's multibasic cleavage site, and the Omicron-defining H655Y mutation on the spike glycoprotein, as well as mutations in the nucleocapsid protein's linker region, all of which were found to be Vero E6-specific. Our analyses also identified deletion mutations on the non-structural protein 1 and membrane glycoprotein as potential Calu-3-specific adaptation changes. S848C mutation on the non-structural protein 3, located to the protein's papain-like protease domain, was also identified as a potential adaptation change, found in viruses propagated in all three cell lines. Our results highlight SARS-CoV-2 high adaptability, emphasize the need to deep-sequence cultured viral samples when used in intricate and sensitive biological experiments, and illustrate the power of experimental evolutionary study in shedding lights on the virus evolutionary landscape.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Chlorocebus aethiops , SARS-CoV-2/genética , Células Vero , Glicoproteínas
5.
Genes Cells ; 28(4): 267-276, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36641236

RESUMEN

Although excessive immune responses by Th17 cells, a helper T cell subset, are implicated in the pathogenesis of inflammatory bowel disease (IBD), the mechanism by which its localization in an inflamed colon is regulated remains unclear. Chemokines and their receptors are involved in the pathogenesis of IBD, however, the relative significance of each receptor on Th17 cells remains unknown. We generated C-C motif chemokine receptor 2 (CCR2) knockout (KO) and CCR6 KO mice in the syngeneic background using the CRISPR/Cas9 system and found that the phenotypes of experimental colitis worsened in both mutant mice. Surprisingly, the phenotype of colitis in CCR2/CCR6-double knockout (CCR2/6 DKO) mice was opposite to that of the single-deficient mice, with significantly milder experimental colitis (p < .05). The same was true for the symptoms in CCR6 KO mice, but not in wild type mice treated with a CCR2 inhibitor, propagermanium. Colonic CCR2+ CCR6+ Th17 cells produced a potentially pathogenic cytokine GM-CSF whose levels in the gut were significantly reduced in CCR2/6 DKO mice (p < .05). These results suggest that GM-CSF-producing CCR2+ CCR6+ Th17 cells are pathogenic and are attracted to the inflamed colon by either CCR2 or CCR6 gradient, which subsequently exacerbates experimental colitis in mice.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Células Th17/metabolismo , Células Th17/patología , Dextranos/efectos adversos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/efectos adversos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Colitis/inducido químicamente , Colitis/genética , Quimiocinas/efectos adversos , Ratones Noqueados , Ratones Endogámicos C57BL , Receptores CCR6/genética , Receptores CCR2/genética
6.
Biochem Biophys Res Commun ; 641: 123-131, 2023 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-36527746

RESUMEN

Multiple sclerosis is an autoimmune disease in which the immune system attacks the nerve myelin sheath. The balance between pathogenic Th17 cells and regulatory Treg cells, both of which express the chemokine receptor CCR6 is critical for determining disease activity. It has been postulated that CCL20, the cognate ligand of CCR6, produced by the blood-brain barrier attracts these immune cells to the central nervous system (CNS). However, the pathological phenotypes of the experimental model of multiple sclerosis in CCR6-knockout (KO) mice are inconclusive, while this has not been addressed in CCL20-KO mice. To address this, we generated CCL20-KO and CCR6-KO mice using the CRISPR/Cas9 system. Clinical phenotypes of experimental autoimmune encephalomyelitis (EAE) in the chronic phase were slightly exacerbated in both mutant mice relative to those in wild-type (WT) mice. Inflammatory cell infiltration and demyelination in the CNS were similar in the KO and WT mice. CNS CD4+ T cell counts were the same for mutant and WT mice. The mutant and WT mice did not differ significantly in the proportions of Th17 and Treg cells in the CNS, or in IL-17 and TGF-ß mRNA expression in the CNS. These findings suggest that CCL20/CCR6-mediated cell migration is not necessarily required for the onset of EAE, and may be compensated for by other chemokine signals.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Sistema Nervioso Central/metabolismo , Quimiocinas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/patología , Receptores CCR6/genética , Receptores CCR6/metabolismo
8.
Thyroid ; 31(10): 1566-1576, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34235979

RESUMEN

Background: Graves' ophthalmopathy (GO) is an autoimmune eye disease with the characteristic symptoms of eyelid retraction and proptosis. Orbital fibroblast activation induced by platelet-derived growth factor-BB (PDGF-BB) stimulation plays a crucial role in GO pathogenesis, leading to excessive proliferation and extracellular matrix production by orbital fibroblasts. Currently, GO treatment options remain limited and novel therapies including targeted drugs are needed. Histone deacetylases (HDACs) are associated with the development and progression of several cancers and autoimmune diseases by epigenetically controlling gene transcription, and HDAC inhibitors (HDACis) may have therapeutic potential. Nevertheless, the role of HDACs in orbital fibroblasts from GO is unknown. Therefore, we studied the expression of HDACs as well as their contribution to extracellular matrix production in orbital fibroblasts. Methods: Orbital tissues were obtained from GO patients (n = 18) who underwent decompression surgery with approval from the Institutional Review Board of the Faculty of Medicine (Protocol number 401/61), Chulalongkorn University (Bangkok, Thailand). Furthermore, orbital tissue was obtained from control patients (n = 3) without inflammatory or thyroid disease who underwent surgery for cosmetic reasons. Orbital fibroblast cultures were established from the orbital tissues. HDAC mRNA and protein expression in orbital fibroblasts was analyzed by reverse transcription-quantitative real-time PCR and Western blot. PDGF-BB-activated orbital fibroblast and orbital tissues were treated with HDACis or HDAC4 small-interfering RNA. Results: PDGF-BB-stimulated orbital fibroblasts had upregulated HDAC4 mRNA and protein expression. HDAC4 mRNA expression was significantly higher in GO compared with healthy control orbital fibroblasts. Histone H3 lysine 9 acetylation (H3K9ac) decreased upon PDGF-BB stimulation. Treatment with HDAC4i (tasquinimod) and HDAC4/5i (LMK-235) significantly decreased both proliferation and hyaluronan production in PDGF-BB-stimulated orbital fibroblasts. HDAC4 silencing reduced mRNA expression of hyaluronan synthase 2 (HAS2), collagen type I alpha 1 chain (COL1A1), Ki67, and α-smooth muscle actin (α-SMA), as well as hyaluronan production in PDGF-BB-stimulated orbital fibroblasts. Tasquinimod significantly reduced HAS2 and α-SMA mRNA expression in whole orbital tissue. Conclusion: Our data indicated, for the first time, that altered HDAC4 regulation along with H3K9 hypoacetylation might represent a mechanism that contributes to excessive proliferation and extracellular matrix production by orbital fibroblasts in GO. HDAC4 might represent a novel target for GO therapy.


Asunto(s)
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Oftalmopatía de Graves/genética , Oftalmopatía de Graves/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/fisiología , Órbita/citología , ARN Interferente Pequeño/uso terapéutico , Proteínas Represoras/fisiología , Proliferación Celular/genética , Células Cultivadas , Expresión Génica , Oftalmopatía de Graves/tratamiento farmacológico , Oftalmopatía de Graves/patología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Terapia Molecular Dirigida , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
9.
Int J Microbiol ; 2020: 3972415, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676114

RESUMEN

Aspergillus flavus is one of the most common isolates from patients with fungal infections. Aspergillus infection is usually treated with antifungal agents, but side effects of these agents are common. Trehalase is an essential enzyme involved in fungal metabolism, and the trehalase inhibitor, validamycin A, has been used to prevent fungal infections in agricultural products. In this study, we observed that validamycin A significantly increased trehalose levels in A. flavus conidia and delayed germination, including decreased fungal adherence. In addition, validamycin A and amphotericin B showed a combinatorial effect on A. flavus ATCC204304 and clinical isolates with high minimum inhibitory concentrations (MICs) of amphotericin B using checkerboard assays. We observed that validamycin A and amphotericin B had a synergistic effect on A. flavus strains resistant to amphotericin B. The MICs in the combination of validamycin A and amphotericin B were at 0.125 µg/mL and 2 µg/mL, respectively. The FICI of validamycin A and amphotericin B of these clinical isolates was about 0.25-0.28 with synergistic effects. No drug cytotoxicity was observed in human bronchial epithelial cells treated with validamycin A using LDH-cytotoxicity assays. In conclusion, this study demonstrated that validamycin A inhibited the growth of A. flavus and delayed conidial germination. Furthermore, the combined effect of validamycin A with amphotericin B increased A. flavus killing, without significant cytotoxicity to human bronchial epithelial cells. We propose that validamycin A could potentially be used in vivo as an alternative treatment for A. flavus infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA