Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biochemistry ; 63(12): 1513-1533, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38788673

RESUMEN

Glycogen synthase kinase 3 (GSK3) plays a pivotal role in signaling pathways involved in insulin metabolism and the pathogenesis of neurodegenerative disorders. In particular, the GSK3ß isoform is implicated in Alzheimer's disease (AD) as one of the key kinases involved in the hyperphosphorylation of tau protein, one of the neuropathological hallmarks of AD. As a constitutively active serine/threonine kinase, GSK3 is inactivated by Akt/PKB-mediated phosphorylation of Ser9 in the N-terminal disordered domain, and for most of its substrates, requires priming (prephosphorylation) by another kinase that targets the substrate to a phosphate-specific pocket near the active site. GSK3 has also been shown to be post-translationally modified by O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation), with still unknown functions. Here, we have found that binding of Akt inhibits GSK3ß kinase activity on both primed and unprimed tau substrates. Akt-mediated Ser9 phosphorylation restores the GSK3ß kinase activity only on primed tau, thereby selectively inactivating GSK3ß toward unprimed tau protein. Additionally, we have shown that GSK3ß is highly O-GlcNAcylated at multiple sites within the kinase domain and the disordered N- and C-terminal domains, including Ser9. In contrast to Akt-mediated regulation, neither the O-GlcNAc transferase nor O-GlcNAcylation significantly alters GSK3ß kinase activity, but high O-GlcNAc levels reduce Ser9 phosphorylation by Akt. Reciprocally, Akt phosphorylation downregulates the overall O-GlcNAcylation of GSK3ß, indicating a crosstalk between both post-translational modifications. Our results indicate that specific O-GlcNAc profiles may be involved in the phosphorylation-dependent Akt-mediated regulation of GSK3ß kinase activity.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Proteínas Proto-Oncogénicas c-akt , Proteínas tau , Humanos , Acetilglucosamina/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glicosilación , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/química , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas tau/metabolismo , Proteínas tau/química
2.
Methods Mol Biol ; 2754: 271-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512672

RESUMEN

Posttranslational modifications (PTMs) of proteins can be investigated by Nuclear Magnetic Resonance (NMR) spectroscopy as a powerful analytical tool to define modification sites, their relative stoichiometry, and crosstalk between modifications. As a Structural Biology method, NMR provides important additional information on changes in protein conformation and dynamics upon modification as well as a mapping of binding sites upon biomolecular interactions. Indeed, PTMs not only mediate functional modulation in protein-protein interactions, but can also induce diverse structural responses with different biological outcomes. Here we present protocols that have been developed for the production and phosphorylation of the neuronal tau protein. Under its aggregated form, tau is a hallmark of Alzheimer's disease and other neurodegenerative diseases named tauopathies involving tau dysfunction and/or mutations. As a common feature shared by various tauopathies, tau aggregates are found into a form displaying an increased, abnormal phosphorylation, also referred to hyperphosphorylation. We have used NMR to investigate the phosphorylation patterns of tau induced by several kinases or cell extracts, how phosphorylation affects the local and overall conformation of tau, its interactions with partners (proteins, DNA, small-molecules, etc.) including tubulin and microtubules, and its capacity to form insoluble fibrillar aggregates. We present here detailed protocols for in vitro phosphorylation of tau by the recombinant kinases CDK2/cyclin A and GSK3ß, the production of the recombinant kinases thereof, as well as the analytical characterization of phosphorylated tau by NMR spectroscopy.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Fosforilación , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ciclina A/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Enfermedad de Alzheimer/metabolismo , Espectroscopía de Resonancia Magnética , Quinasa 2 Dependiente de la Ciclina/genética
3.
Methods Mol Biol ; 2754: 237-269, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512671

RESUMEN

The neuronal microtubule-associated tau protein is characterized in vivo by a large number of post-translational modifications along the entire primary sequence that modulates its function. The primary modification of tau is phosphorylation of serine/threonine or tyrosine residues that is involved in the regulation of microtubule binding and polymerization. In neurodegenerative disorders referred to as tauopathies including Alzheimer's disease, tau is abnormally hyperphosphorylated and forms fibrillar inclusions in neurons progressing throughout different brain area during the course of the disease. The O-ß-linked N-acetylglucosamine (O-GlcNAc) is another reversible post-translational modification of serine/threonine residues that is installed and removed by the unique O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA), respectively. This modification was described as a potential modulator of tau phosphorylation and functions in the physiopathology. Moreover, reducing protein O-GlcNAc levels in the brain upon treatment of tauopathy mouse models with an OGA inhibitor reveals a beneficial effect on tau pathology and neurodegeneration. However, whether the role of tau O-GlcNAcylation is responsible of the protective effect against tau toxicity remains to be determined. The production of O-GlcNAc modified recombinant tau protein is a valuable tool for the investigations of the impact of O-GlcNAcylation on tau functions, modulation of interactions with partners and crosstalk with other post-translational modifications, including but not restricted to phosphorylation. We describe here the in vitro O-GlcNAcylation of tau with recombinant OGT for which we provide an expression and purification protocol. The use of the O-GlcNAc tau protein in functional studies requires the analytical characterization of the O-GlcNAc pattern. Here, we describe a method for the O-GlcNAc modification of tau protein with recombinant OGT and the analytical characterization of the resulting O-GlcNAc pattern by a combination of methods for the overall characterization of tau O-GlcNAcylation by chemoenzymatic labeling and mass spectrometry, as well as the quantitative, site-specific pattern by NMR spectroscopy.


Asunto(s)
Tauopatías , Proteínas tau , Ratones , Animales , Proteínas tau/metabolismo , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo , Procesamiento Proteico-Postraduccional , Tauopatías/genética , Tauopatías/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo , Serina/metabolismo , Treonina/metabolismo
4.
Front Chem ; 10: 886382, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646824

RESUMEN

Protein aggregation into highly ordered, regularly repeated cross-ß sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA