Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Fish Physiol Biochem ; 50(2): 543-556, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180679

RESUMEN

This study evaluated the effects of prickly pear (Opuntia ficus-indica) peel (PPP) on salinity tolerance, growth, feed utilization, digestive enzymes, antioxidant capacity, and immunity of Nile tilapia (Oreochromis niloticus). PPP was incorporated into four iso-nitrogenous (280 g kg-1 protein) and iso-energetic (18.62 MJ kg-1) diets at 0 (PPP0), 1 (PPP1), 2 (PPP2), and 4 (PPP4) g kg-1. Fish (9.69 ± 0.2 g) (mean ± SD) were fed the diets for 75 days. Following the feeding experiment, fish were exposed to a salinity challenge (25‰) for 24 h. Fish survival was not affected by the dietary PPP inclusion either before or after the salinity challenge. Fish fed the PPP-supplemented diets showed lower aspartate aminotransferase, alanine aminotransferase, cortisol, and glucose levels compared to PPP0, with the lowest values being observed in PPP1. Fish fed dietary PPP had higher growth rates and feed utilization than PPP0. Quadratic regression analysis revealed that the best weight gain was obtained at 2.13 g PPP kg-1 diet. The highest activities of protease and lipase enzymes were recorded in PPP1, while the best value of amylase was recorded in PPP2, and all PPP values were higher than PPP0. Similarly, PPP1 showed higher activities of lysozyme, alternative complement, phagocytic cells, respiratory burst, superoxide dismutase, glutathione peroxidase and catalase, and lower activity of malondialdehyde than in PPP0. Further increases in PPP levels above 2 g kg-1 diet led to significant retardation in the immune and antioxidant parameters. Thus, the inclusion of PPP at about 1 to or 2 g kg-1 diet can improve stress tolerance, immunity, and antioxidant capacity in Nile tilapia.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Opuntia , Animales , Antioxidantes/metabolismo , Opuntia/metabolismo , Tolerancia a la Sal , Dieta/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Resistencia a la Enfermedad
2.
BMC Genomics ; 24(1): 476, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612592

RESUMEN

BACKGROUND: Tilapia is one of the most essential farmed fishes in the world. It is a tropical and subtropical freshwater fish well adapted to warm water but sensitive to cold weather. Extreme cold weather could cause severe stress and mass mortalities in tilapia. The present study was carried out to investigate the effects of cold stress on the up-regulation of antifreeze protein (AFP) genes in Nile tilapia (Oreochromis niloticus). Two treatment groups of fish were investigated (5 replicates of 15 fish for each group in fibreglass tanks/70 L each): 1) a control group; the fish were acclimated to lab conditions for two weeks and the water temperature was maintained at 25 °C during the whole experimental period with feeding on a commercial diet (30% crude protein). 2) Cold stress group; the same conditions as the control group except for the temperature. Initially, the temperature was decreased by one degree every 12 h. The fish started showing death symptoms when the water temperature reached 6-8 °C. In this stage the tissue (muscle) samples were taken from both groups. The immune response of fish exposed to cold stress was detected and characterized using Differential Display-PCR (DD-PCR). RESULTS: The results indicated that nine different up-regulation genes were detected in the cold-stressed fish compared to the control group. These genes are Integrin-alpha-2 (ITGA-2), Gap junction gamma-1 protein-like (GJC1), WD repeat-containing protein 59 isoform X2 (WDRP59), NUAK family SNF1-like kinase, G-protein coupled receptor-176 (GPR-176), Actin cytoskeleton-regulatory complex protein pan1-like (PAN-1), Whirlin protein (WHRN), Suppressor of tumorigenicity 7 protein isoform X2 (ST7P) and ATP-binding cassette sub-family A member 1-like isoform X2 (ABCA1). The antifreeze gene type-II amplification using a specific PCR product of 600 bp, followed by cloning and sequencing analysis revealed that the identified gene is antifreeze type-II, with similarity ranging from 70 to 95%. The in-vitro transcribed gene induced an antifreeze protein with a molecular size of 22 kDa. The antifreeze gene, ITGA-2 and the WD repeat protein belong to the lectin family (sugar-protein). CONCLUSIONS: In conclusion, under cold stress, Nile tilapia express many defence genes, an antifreeze gene consisting of one open reading frame of approximately 0.6 kbp.


Asunto(s)
Cíclidos , Tilapia , Animales , Cíclidos/genética , Respuesta al Choque por Frío/genética , Tilapia/genética , Genes Reguladores , Frío , Conexinas
3.
J Aquat Anim Health ; 35(4): 248-262, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37501584

RESUMEN

OBJECTIVES: In the present study, we investigated the effects of partial or total replacement of dietary inorganic trace materials (ITM) with metal-amino acid complexes (MAACs) on immune response, antioxidant capacity, cytokine genes expression, and overall health status of Nile Tilapia Oreochromis niloticus reared in in-pond hapas (mesh cages) under field conditions. METHODS: All-male Nile Tilapia with an average initial weight of about 90 g fish-1 were stocked into the hapas, in quadruplicates, at a density of 60 fish per hapa (30 fish m-3 ). The fish in each hapa were acclimatized to culture conditions and test diets for 1 week. Water quality parameters, including temperature (°C), pH, dissolved oxygen (mg L-1 ), and total ammonia (mg L-1 ), were monitored regularly. The MAACs were formulated to contain the same mineral concentrations found in the inorganic premix. Metal-amino acid complexes replaced the ITM premix at 0 (control), 25, 50, 75, and 100% levels (Table 1). The diets were fed to caged Nile Tilapia twice a day, for 80 days, at a daily rate of 3% of their body weights. The fish were weighed every 10 days, and the daily rations were readjusted. At harvest, fish in each hapa were collected, counted, and weighed collectively. Five fish from each hapa were rapidly anesthetized, and used for chemical and physiological analyses, including antioxidant and immune response analyses, liver function analysis, and gene expression. RESULT: The activities of lysozyme, respiratory burst (%), alternative complement (ACH50), phagocytic cells, phenoloxidase, superoxide dismutase, glutathione peroxidase, and liver function enzymes were all improved with increasing supplemental MAACs up to the 50% substitution level. The expression of cytokine genes, including interferon, tumor necrosis factor, interleukin-1, serum alkaline phosphatase, the integrated microbial genomes, chloramphenicol acetyltransferase, and transforming growth factor genes, was significantly upregulated in fish fed on MAAC-supplemented diets compared with the control group. The 50% MAAC level produced the highest upregulation of these genes, whereas gene expression decreased with increasing dietary MAAC levels to 75% and 100%. The quadratic regression analysis indicated that about 60-65% MAAC is required for maximum promotion of immunological and oxidative stress responses, gene expression, and overall health status of Nile Tilapia reared in in-pond hapas under field conditions. CONCLUSION: Replacement of the ITM premix with a MAAC premix enhanced the immune and antioxidant responses of Nile Tilapia.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Masculino , Animales , Antioxidantes/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacología , Suplementos Dietéticos/análisis , Dieta/veterinaria , Resistencia a la Enfermedad , Hígado , Citocinas/genética , Citocinas/metabolismo , Citocinas/farmacología , Zinc/metabolismo , Zinc/farmacología , Alimentación Animal/análisis
4.
J Therm Biol ; 96: 102833, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33627271

RESUMEN

This study evaluated the effects of different levels of dietary lipids on the growth performance, feed utilization, body composition and cold tolerance of Nile tilapia (Oreochromis niloticus) fingerlings (7.33 ± 0.12 g fish-1). Four isonitrogenous (275 g kg-1 crude protein), isocaloric (18.5 MJ kg-1) diets containing a mixture of fish oil and corn oil (1:1 ratio) at different levels (70, 85, 110 and 130 g kg-1) were prepared and fed to Nile tilapia reared at a fixed water temperature 25 ± 1 °C for two months. After the feeding trial, the fish were exposed to a cold challenge. The best growth rates and feed utilization were achieved at 70 and 85 g kg-1 dietary lipid, whereas the lowest results were recorded at higher lipid levels (110 and 130 g kg-1). The ability of Nile tilapia to survive the acute cold stress was significantly improved as the lipid level increased from 70 to 110 g kg-1 and decreased with further increase in lipid levels. During the cold stress, saturated fatty acids (SFA) significantly decreased, while unsaturated fatty acids (UFA) tended to increase. Thus, this study demonstrates, to a certain level, that high dietary lipid levels have a positive effect on the cold tolerance of Nile tilapia fingerlings.


Asunto(s)
Cíclidos , Respuesta al Choque por Frío/fisiología , Aceite de Maíz/administración & dosificación , Grasas de la Dieta/administración & dosificación , Aceites de Pescado/administración & dosificación , Aclimatación , Animales , Composición Corporal , Cíclidos/anatomía & histología , Cíclidos/crecimiento & desarrollo , Cíclidos/fisiología , Frío/efectos adversos , Ácidos Grasos/metabolismo , Hígado/anatomía & histología
5.
Probiotics Antimicrob Proteins ; 12(2): 365-374, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31359248

RESUMEN

A 50-day feeding trial was conducted to evaluate the effects of dietary supplementation of a novel marine psychrotrophic bacterium, Psychrobacter maritimus S, on growth performance and immune responses of Nile tilapia (Oreochromis niloticus) fingerlings. Triplicate groups of Nile tilapia (10 fish each) were fed for 50 days with three different diets: T0 (without probiotic, negative control), T0.5 (supplemented with 3.3 × 108 CFU g-1P. maritimus S), and T1 (supplemented with 6.6 × 108 CFU g-1P. maritimus S). The test diets were fed to fish at a daily rate of 3% of their live weights, three times per day. On the 50th day, fish were weighed and blood samples were collected to determine the main nonspecific humoral and cellular immune responses and digestive enzymes (protease, amylase, and lipase). Fish performance (weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio, and protein productive value) was also calculated. Growth rates and digestive enzyme activity were significantly increased (P < 0.05) with increasing dietary P. maritimus S up to 0.5%, and leveled off with further increase in bacterial concentrations. Phagocytic activity, lysozyme activity, alternative complement hemolysis, and hematological parameters were also significantly increased (P < 0.05) with increasing P. maritimus S concentration to 0.5%, followed by a slight decrease (P > 0.05) at 1% level. The expression of interleukin-4 and interleukin-12 genes was significantly upregulated, while heat shock protein gene was downregulated, with dietary supplementation of P. maritimus S up to 0.5% level. These results suggest that 0.5% of dietary Psychrobacter maritimus S supplementation could be considered as a novel probiont for optimum growth performance and immune response of Nile tilapia fingerlings.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Cíclidos , Suplementos Dietéticos , Probióticos/administración & dosificación , Psychrobacter , Animales , Cíclidos/crecimiento & desarrollo , Cíclidos/inmunología , Cíclidos/microbiología
6.
J Therm Biol ; 79: 50-55, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30612685

RESUMEN

This study was carried out to evaluate the effects of dietary lipid sources on growth performance, fatty acids composition and cold tolerance of Nile tilapia (Oreochromis niloticus) fingerlings (7.00 ±â€¯0.50 g/fish). The fish were fed four isonitrogenous (28% crude protein), isocaloric (500 kcal/100 g) diets containing four lipid sources; fish oil (FO), corn oil (CO), coconut oil (COCO) or fish oil/ corn oil mixture (1:1 ratio) (oil mix). The diets were offered to the fish at a daily rate of 3% of their body weights (BW), twice a day for two months. After the feeding trial, the fish were exposed to decreasing water temperature from 25 °C until the appearance of death symptoms. The results revealed that FO-based diets (FO and oil mix) produced the best growth rates and feed efficiency, followed by corn oil diet, while COCO resulted in the lowest performance. Fish fed on CO and oil mix showed higher body unsaturated fatty acids (UFA) and lower lethal temperature than those fed on FO- or COCO-based diets. These results indicate that cold shock can modify the lipid metabolism in Nile tilapia by lowering total body saturated fatty acids and raising n-6 and n-3 UFA. This finding suggests that the inclusion of high levels of plant oils in Nile tilapia feeds can enhance their cold tolerance.


Asunto(s)
Aclimatación , Alimentación Animal/normas , Frío , Tilapia/fisiología , Animales , Aceite de Maíz/metabolismo , Aceites de Pescado/metabolismo
7.
Fish Shellfish Immunol ; 61: 194-200, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28062189

RESUMEN

Marine environment represents a promising source of new, unconventional bioactive compounds with health-promoting abilities, which can be used as food supplements. The present study was carried out to evaluate the efficacy of marine Psychrobacter namhaensis SO89 on growth performance and immune response of Nile tilapia (Oreochromis niloticus). P. namhaensis were isolated from marine environments and phylogenetically identified by 16S rRNA gene sequences. The bacterial isolate was incorporated in Nile tilapia diets (30% crude protein) at three concentrations (0.0, 0.5 and 1.0%; w/w) (designated as T0, T0.5 and T1, respectively), which were equivalent to 0.0, 2.8 × 107 and 5.6 × 107 CFU g-1 diet, respectively. The diets were fed to Nile tilapia fingerlings (4.58 ± 0.14 g average weight) at a daily rate of 3% of their live body weights (BW), 3 times a day for 50 days. The best growth rates and feed utilization efficiency were obtained at 0.5% P. namhaensis SO89 concentration. Hematocrit (Ht%), hemoglobin (Hb%), erythrocytes (RBC) and total leukocyte (WBCs) values were significantly higher in P. namhaensis SO89- fed groups than in the control group. Similarly, immunoglobulin M (IgM), alternative complement hemolysis (ACH50), phagocytic and lysozyme activities significantly increased following dietary P. namhaensis SO89 supplementation at 0.5% concentration compared to the control group. The expression of IL-4 and IL-12 genes was also significantly up-regulated in P. namhaensis SO89-treated groups up to 0.5% concentration. Increasing bacterial concentration to 1% resulted in a significant decrease in fish performance and immune response. The present results suggest that marine psychrotolerant (Psychrobacter namhaensis) can be considered as a novel feed additive in Nile tilapia feeds.


Asunto(s)
Cíclidos/crecimiento & desarrollo , Cíclidos/inmunología , Inmunidad Innata , Probióticos/farmacología , Psychrobacter/química , Alimentación Animal/análisis , Animales , Análisis Químico de la Sangre/veterinaria , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Pruebas Hematológicas/veterinaria , Psychrobacter/clasificación , Psychrobacter/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
8.
Probiotics Antimicrob Proteins ; 9(2): 150-156, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27822707

RESUMEN

The aims of this study were to evaluate the effects of Lactococcus lactis subsp. lactis on the growth, intestinal microbiota, digestive enzyme activity, and disease resistance of Litopenaeus vannamei. Diets containing four different concentrations of L. lactis (0 [basal diet], 106, 107, and 108 CFU g-1) were fed to white shrimps L. vannamei (average weight 5.89 ± 0.36 g) for 8 weeks. At the end of the feeding trial, shrimps were immersed in Caspian Seawater (10.8 ppt) contaminated with 106 CFU ml-1 pathogenic V. anguillarum for 2 h. Results revealed that growth rate, survival, and body protein level were increased with dietary supplementation of L. lactis. The activities of digestive enzymes (cellulose, lipase, amylase, and protease) were significantly higher in the groups fed with diets containing 107 or 108 CFU g-1 L. lactis than those in the control. The Lactobacillus and Bacillus counts were higher (P < 0.05) in the intestine of shrimps fed with L. lactis-supplemented diets. In addition, higher level of L. lactis supplementation decreased the Vibrio counts. Moreover, L. vannamei fed diet supplemented with 108 CFU g-1 of L. lactis exhibited significantly the highest hematocyte count and post-challenge survival rate (79.2 %). Collectively, these results suggest that dietary supplementation of L. lactis subsp. lactis at 108 CFU g-1 can promote growth performance, digestive enzyme activity, and disease resistance of L. vannamei.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Lactococcus lactis/fisiología , Penaeidae/crecimiento & desarrollo , Probióticos/administración & dosificación , Amilasas/metabolismo , Alimentación Animal/análisis , Animales , Resistencia a la Enfermedad , Intestinos/enzimología , Intestinos/inmunología , Intestinos/microbiología , Lipasa/metabolismo , Penaeidae/enzimología , Penaeidae/inmunología , Penaeidae/microbiología , Péptido Hidrolasas/metabolismo , Vibrio/fisiología
9.
Proc Natl Acad Sci U S A ; 106(5): 1364-7, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19164510

RESUMEN

The highly productive coastal Mediterranean fishery off the Nile River delta collapsed after the completion of the Aswan High Dam in 1965. But the fishery has been recovering dramatically since the mid-1980s, coincident with large increases in fertilizer application and sewage discharge in Egypt. We use stable isotopes of nitrogen (delta(15)N) to demonstrate that 60%-100% of the current fishery production may be from primary production stimulated by nutrients from fertilizer and sewage runoff. Although the establishment of the dam put Egypt in an ideal position to observe the impact of rapid increases in nutrient loading on coastal productivity in an extremely oligotrophic sea, the Egyptian situation is not unique. Such anthropogenically enhanced fisheries also may occur along the northern rim of the Mediterranean and offshore of some rapidly developing tropical countries, where nutrient concentrations in the coastal waters were previously very low.


Asunto(s)
Explotaciones Pesqueras , Animales , Isótopos de Carbono/análisis , Egipto , Fertilizantes , Peces , Mar Mediterráneo , Isótopos de Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA