Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Glob Chang Biol ; 30(4): e17277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634544

RESUMEN

More than half of the world's population is nourished by crops fertilized with synthetic nitrogen (N) fertilizers. However, N fertilization is a major source of anthropogenic emissions, augmenting the carbon footprint (CF). To date, no global quantification of the CF induced by N fertilization of the main grain crops has been performed, and quantifications at the national scale have neglected the CO2 assimilated by plants. A first cradle-to-grave life cycle assessment was performed to quantify the CF of the N fertilizers' production, transportation, and application to the field and the uses of the produced biomass in livestock feed and human food, as well as biofuel production. We quantified the direct and indirect inventories emitted or sequestered by N fertilization of main grain crops: wheat, maize, and rice. Grain food produced with N fertilization had a net CF of 7.4 Gt CO2eq. in 2019 after excluding the assimilated C in plant biomass, which accounted for a quarter of the total CF. The cradle (fertilizer production and transportation), gate (fertilizer application, and soil and plant systems), and grave (feed, food, biofuel, and losses) stages contributed to the CF by 2%, 11%, and 87%, respectively. Although Asia was the top grain producer, North America contributed 38% of the CF due to the greatest CF of the grave stage (2.5 Gt CO2eq.). The CF of grain crops will increase to 21.2 Gt CO2eq. in 2100, driven by the rise in N fertilization to meet the growing food demand without actions to stop the decline in N use efficiency. To meet the targets of climate change, we introduced an ambitious mitigation strategy, including the improvement of N agronomic efficiency (6% average target for the three crops) and manufacturing technology, reducing food losses, and global conversion to healthy diets, whereby the CF can be reduced to 5.6 Gt CO2eq. in 2100.


Asunto(s)
Huella de Carbono , Nitrógeno , Humanos , Fertilizantes/análisis , Biocombustibles , Agricultura , Suelo , Productos Agrícolas , Grano Comestible/química , China , Carbono/análisis
2.
PLoS One ; 18(12): e0296032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38109310

RESUMEN

Nanotechnology applications have been employed to improve the stability of bioactive components and drug delivery. Natural-based extracts, especially olive leaf extracts, have been associated with the green economy not only as recycled agri-waste but also in the prevention and treatment of various non-communicable diseases (NCDs). The aim of this work was to provide a comparison between the characteristics, biological activity, and gene expression of water extract of olive leaves (OLE), green synthesized OLE silver nanoparticles (OL/Ag-NPs), and OLE whey protein capsules (OL/WPNs) of the two olive varieties, Tofahy and Shemlali. The particles were characterized by dynamic light scattering, scanning electron microscope (SEM), and Fourier transform infrared. The bioactive compounds of the preparations were evaluated for their antioxidant activity and anticancer effect on HCT-116 colorectal cells as well as for their regulatory effects on cytochrome C oxidase (Cox1) and tumor necrosis factor α (TNF-α) genes. (OL/Ag-NPs) were found to be smaller than (OL/WPNs) with sizes of (37.46±1.85 and 44.86±1.62 nm) and (227.20±2.43 and 553.02±3.60 nm) for Tofahy and Shemlali, respectively. SEM showed that Shemlali (OL/Ag-NPs) had the least aggregation due to their highest Ƹ-potential (-31.76 ± 0.87 mV). The preparations were relatively nontoxic to Vero cells (IC50 = 151.94-789.25 µg/mL), while they were cytotoxic to HCT-116 colorectal cells (IC50 = 77.54-320.64 µg/mL). Shemlali and Tofahy OLE and Tofahy OL/Ag-NPs had a higher selectivity index (2.97-7.08 µg/mL) than doxorubicin (2.36 µg/mL), indicating promising anticancer activity. Moreover, Shemlali preparations regulated the expression of Cox1 (up-regulation) and TNF-α (down-regulation) on HCT-116 cells, revealing their efficiency in suppressing the expression of genes that promote cancer cell proliferation. (OL/Ag-NPs) from Tofahy and Shemlali were found to be more stable, effective, and safe than (OL/WPNs). Consequently, OL/Ag-NPs, especially Tofahy, are the best and safest nanoscale particles that can be safely used in food and pharmaceutical applications.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas del Metal , Olea , Animales , Chlorocebus aethiops , Humanos , Plata/farmacología , Suero Lácteo , Proteína de Suero de Leche , Factor de Necrosis Tumoral alfa , Células Vero , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
3.
Arch Pharm (Weinheim) ; 356(5): e2200558, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36690587

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is a worldwide war. Raising the blood pH might be a crucial strategy to chase COVID-19. The human blood is slightly alkaline, which is essential for cell metabolism, normal physiology, and balanced immunity since all of these biological processes are pH-dependent. Varieties of physiologic derangements occur when the blood pH is disrupted. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) proliferates in acidic blood that magnifies the severity of COVID-19. On the other side, blood acidemia is linked to increased morbidity and mortality because of its complications on immunity, especially in the elderly and in critical diseases such as cancer, musculoskeletal degradation, renal, cardiac, and pulmonary disorders, which result in many pathological disorders such as osteomalacia, and disturbing the hematopoiesis. Additionally, acidemia of the blood facilitates viral infection and progression. Thus, correcting the acid-base balance might be a crucial strategy for the treatment of COVID-19, which might be attributed to the distraction of the viral spike protein to its cognate receptor angiotensin-converting enzyme 2 and supporting the over-taxed immunity.


Asunto(s)
COVID-19 , Humanos , Anciano , SARS-CoV-2 , Peptidil-Dipeptidasa A/metabolismo , Relación Estructura-Actividad , Proteínas Virales , Concentración de Iones de Hidrógeno
4.
Germs ; 13(4): 321-331, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38361541

RESUMEN

Introduction: This study aimed to examine the effect of commonly used non-antibiotic drugs (dexamethasone and tenoxicam), on treatment of Pseudomonas aeruginosa infections, antibiotic resistance and virulence in this pathogen. Methods: Four antibiotics (gentamicin, cefepime, ciprofloxacin and meropenem) were investigated. The proteolysis and hemolysis were selected as virulence factors for investigation. In this work, we selected the following final concentrations: dexamethasone (0.0052 µg/mL) and tenoxicam (2.7 µg/mL) to be used in combination with antibiotics or alone for investigation of their effects on antibiotic resistance and virulence in P. aeruginosa isolates. Results: The drugs either increased or decreased antibiotic resistance in only 0-3 isolates, which indicates that the investigated drugs did not significantly affect the antibiotic resistance. Interestingly, our study demonstrated that both dexamethasone and tenoxicam increased the hemolytic activity of the investigated isolates. On the other hand, our results indicated that no overall final increasing or decreasing effect could be observed for dexamethasone on the proteolytic activity, while tenoxicam increased the proteolytic activity of the investigated isolates. Interestingly, by real-time PCR dexamethasone has shown significant down-regulation of virulence genes namely algD, plcH and toxA, apparently, in case of combination with ciprofloxacin and with gentamicin in one isolate. However, a negative influence was observed in another isolate. Unfortunately, in the case of tenoxicam the only positive effect was observed in the combination with gentamicin in one isolate. Conclusions: Resistance of P. aeruginosa against gentamicin and ciprofloxacin may be affected by combining these antibiotics with dexamethasone or tenoxicam.

5.
Sci Rep ; 12(1): 21058, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36474013

RESUMEN

A series of (Z)-N-(adamantan-1-yl)-3,4-diarylthiazol-2(3H)-imines (5a-r) was synthesized via condensation of 1-(adamantan-1-yl)-3-arylthioureas (3a-c) with various aryl bromomethyl ketones (4a-f). The structures of the synthesized compounds were characterized by 1H NMR, 13C NMR and by X-ray crystallography. The in vitro inhibitory activities of the synthesized compounds were assessed against a panel of Gram-positive and Gram-negative bacteria, and pathogenic fungi. Compounds 5c, 5g, 5l, 5m, and 5q displayed potent broad-spectrum antibacterial activity, while compounds 5a and 5o showed activity against the tested Gram-positive bacteria. Compounds 5b, 5l and 5q displayed potent antifungal activity against Candida albicans. In addition, the synthesized compounds were evaluated for anti-proliferative activity towards five human tumor cell lines. The optimal anti-proliferative activity was attained by compounds 5e and 5k which showed potent inhibitory activity against all the tested cell lines. Molecular docking analysis reveals that compounds 5e and 5k can occupy the positions of NAD cofactor and the histone deacetylase inhibitor EX527 at the active site of SIRT1 enzyme.


Asunto(s)
Adamantano , Tiazoles , Humanos , Tiazoles/farmacología , Antibacterianos/farmacología , Adamantano/farmacología , Simulación del Acoplamiento Molecular , Bacterias Gramnegativas , Bacterias Grampositivas
6.
Front Plant Sci ; 13: 1069624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507389

RESUMEN

Partial replacement of chemicals with biological fertilizers is a recommended strategy to reduce the adverse environmental effects of chemical fertilizer losses. Enhancing the reduced mineral with biological fertilizers strategy by foliar application of humic acid (HA) and amino acids (AA) can reduce environmental hazards, while improving maize (Zea mays L.) production under semiarid conditions. The recommended doses of N, P and K (e.g., 286 kg N ha-1, 75 kg P2O5 ha-1 and 67 kg K2O ha-1) were applied as the first fertilization level (100% NPK) and were replaced with biofertilizers by 100%, 75%, 50% and 25% as levels of reducing mineral fertilization. These treatments were applied under four foliar applications of tap water (TW), HA, AA and a mixture of HA and AA. Our results reported significant reductions in all parameters, including maize ear yield attributes and grain nutrient uptake, when replacing the mineral NPK with biofertilizers by 25-100% replacement. However, these reductions were mitigated significantly under the application of growth stimulants in the descending order: HA and AA mixture>AA>HA>TA. Applying a mixture of HA and AA with 75% NPK + biofertilizers increased ear length, grain yield, grain uptake of N and K, and crude protein yield by 37, 3, 4, 11 and 7%, respectively as compared with 100% mineral fertilizer only. Moreover, all investigated parameters were maximized under the application of 75% NPK + biofertilizers combined with AA or the mixture of HA and AA, which reveals the importance of growth stimulants in enhancing the reduced chemical NPK strategy. It could be concluded that the mineral NPK rate can be reduced by 25% with biofertilization without any yield losses when combined with HA and AA under arid and semi-arid conditions. That achieves the dual goals of sustainable agriculture by improving yield, while reducing environmental adverse effects.

7.
Saudi J Biol Sci ; 29(11): 103462, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36267911

RESUMEN

Background: Terfezia claveryi truffles are known for their nutritional value and have been considered among traditional treatments for ophthalmic infections and ailments. Objectives: We sought to investigate the in vitro antimicrobial efficacy of several T. claveryi extracts from Saudi Arabia. Certain pathogenic fungi and gram-negative and gram-positive bacteria were included. Methods: Dry extracts were prepared using methanol, ethyl acetate, and distilled water, while the latter was used for preparing fresh extracts. The extracts were microbiologically evaluated through the disc-diffusion agar method; the zones of inhibition of microbial growth were measured post-incubation. The minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) were determined in Müller-Hinton Broth through the microdilution susceptibility method. anti-biofilm activity was assessed for potent extracts. Results: Dry extracts showed potent activity (>16-mm inhibition zones) against gram-positive (Bacillus subtilis IFO3007 and Staphylococcus aureus IFO3060) and gram-negative (Pseudomonas aeruginosa IFO3448 and Escherichia coli IFO3301) bacteria. The activity against fungi was moderate (12-16-mm inhibition zones) for both Aspergillus oryzae IFO4177 and Candida albicans IFO0583; there was no activity against Aspergillus niger IFO4414 growth. Methanolic extract had the lowest MIC and MBC, exhibiting remarkable activity against B. subtilis growth. Fresh extract showed moderate activity against bacterial growth and inactivity against fungal growth. Methanolic extract showed potent anti-biofilm activity (IC50, 2.0 ± 0.18 mg/mL) against S. aureus. Conclusions: T. claveryi extracts showed antibacterial effects potentially suitable for clinical application, which warrants further in-depth analysis of their individual isolated compounds.

8.
J Environ Manage ; 322: 116018, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36067673

RESUMEN

Managing reactive nitrogen (Nr) in agricultural production is crucial for addressing the triple challenges of food security, climate change and environmental degradation. Intensive work has been conducted to investigate the effects of mitigation strategies on reducing Nr losses by ammonia emission (Nr-NH3), nitrous oxide emission (Nr-N2O) and nitrate leaching (Nr-NO3-) separately. This meta-analysis evaluated the efficiency of each strategy in mitigating Nr losses coupled with grain yield responses. The results indicate that producing one Megagram (Mg) of wheat grains caused higher Nr losses, twice that of rice and 17% that of maize. The Nr-NH3 and Nr-NO3- were the dominant sources of Nr losses of the three crops (96%), while Nr-NH3 only presented 86% of the total Nr losses for rice. Reducing the N rate strategy decreased the yield by 33% and the Nr losses by 62% compared with the conventional rate (150-250 kg N ha-1) as an average of the three crops. In contrast, increasing the N rate higher than 250 kg N ha-1 amplified the yield by 15% but also caused a 71% increase in Nr losses compared with the conventional rate. Although subsurface application decreased Nr losses by 5%, this study rejected this approach as an effective strategy due to a 4% yield decline on average of the grain crops. Slow-release fertilizers decreased Nr-NH3 and Nr-N2O losses by 41-58% and 54-89%, respectively, of the highest losses under urea in the three crops, but also led to yield reductions. Organic amendments achieved the highest drop in Nr-NO3- loss by 66% in maize coupled with yield declines. Biochar increased wheat and maize yields by 0.3 and 0.1 Mg, respectively, coupled with 1 kg reduction in Nr losses. On average, inhibitors augmented the grain yields by 0.2 Mg ha-1 for each 1 kg decline in Nr losses. In conclusion, for sustainable agricultural intensification, biochar (for wheat only) and inhibitors (for the three crops) are strongly recommended as mitigation strategies for Nr losses from grain crop production systems in China.


Asunto(s)
Fertilizantes , Oryza , Agricultura/métodos , Amoníaco/metabolismo , Carbón Orgánico , China , Productos Agrícolas/metabolismo , Grano Comestible/metabolismo , Fertilizantes/análisis , Nitratos/metabolismo , Nitrógeno/análisis , Óxido Nitroso/análisis , Oryza/metabolismo , Suelo , Triticum/metabolismo , Urea , Zea mays/metabolismo
9.
Saudi J Biol Sci ; 29(3): 1653-1667, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35280533

RESUMEN

Biofertilizers are a promising approach to substantially improve nutrient recovery and crop production. Moreover, zinc (Zn) deficiency is one of the key abiotic factors limiting global rice production. However, the effect of Zn-biochemical co-fertilization on rice production and nutrients recovery and surplus under semi-arid environmental conditions is not fully obvious. Two years field experiment was conducted to evaluate the effect of Zn-biochemical (nitrogen "N", phosphorus "P", and potassium "K") co-fertilization on yield and yield components, physico-chemical characteristics, and nutrient recovery and surplus as well as farm profitability of four rice (Oryza sativa L.) cultivars treated with two Zn levels (no Zn application, and 600 mg chelated Zn L-1 as a foliar application) and six fertilization regimes (no fertilizers application, biofertilizers, 25% NPK plus biofertilizers, 50% NPK plus biofertilizers, 75% NPK plus biofertilizers, and 100% NPK). Biofertilizers mixture (cerealin, phosphorine, and potassiomage) were used. The results revealed that chemical constituents, growth attributes, yield, yield components, nutrients uptake (N, P, K, and Zn), and nutrients recovery (N, P, and K) significantly increased due to Zn foliar application. Biofertilizers replacement for 25% of inorganic NPK combined with Zn provides the highest nutrients uptake through increasing N, P, and K recovery by 57-94%, 61-128%, and 45-69%, respectively in the four rice cultivars compared with 100% NPK treatment. This improvement in nutrients uptake and recovery was attributed to decrease nutrients surplus by 64-78%, 46-53%, and 50-59%, respectively. Additionally, Zn-biochemical co-fertilization improves growth attributes, yield, and yield components of rice cultivars through producing more contents of chlorophyll a and b, carotenoids, total carbohydrates, and total amino acids than using 100% NPK alone. All previous characteristics significantly affected by the cultivated rice variety. The net return under the treatment of 75% NPK plus biofertilizers plus Zn foliar application was 21.5-27.5% higher than the treatment of 100% NPK. Therefore, our findings suggest that biofertilizers replacement for 25% of inorganic NPK combined with Zn foliar application supplies a financially attractive choice to substantially enhance nutrient recovery and production of rice, while effectively reducing nutrients loss.

10.
Sci Rep ; 11(1): 24142, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921154

RESUMEN

Water deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield-related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.


Asunto(s)
Aclimatación , Pseudomonas putida/crecimiento & desarrollo , Rhizobium leguminosarum/crecimiento & desarrollo , Microbiología del Suelo , Vicia faba , Deshidratación/metabolismo , Deshidratación/microbiología , Vicia faba/genética , Vicia faba/crecimiento & desarrollo , Vicia faba/microbiología
11.
Front Plant Sci ; 12: 637783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603344

RESUMEN

Nano-silicon application is an efficient novel approach to mitigate the deleterious impacts of drought stress on field crops, which is expected to increase owing to climate change, especially in arid regions. Two-season field studies investigated the influence of foliar-applied nano-silicon (0.5, 1, and 1.5 mM) on physiological and biochemical attributes and their impacts on crop water productivity (CWP) and the agronomic traits of faba beans (Vicia faba). The plants were evaluated under two irrigation regimes: well-watered (100% ETc giving 406 mm ha-1) and drought stress (65% ETc giving 264 mm ha-1). It was found that drought stress significantly decreased gas exchange (leaf net photosynthetic rate, stomatal conductance, and rate of transpiration), water relations (relative water content and membrane stability index), nutrient uptake (N, P, K+, and Ca+2), flavonoids, and phenolic content. In contrast, drought stress significantly increased oxidative stress (H2O2 and O 2 · - ) and enzymatic and non-enzymatic antioxidant activities compared with the well-watered treatment. These influences of drought stress were negatively reflected in seed yield-related traits and CWP. However, foliar treatment with nano-silicon, particularly with 1.5 mM, limited the devastating impact of drought stress and markedly enhanced all the aforementioned parameters. Therefore, exogenously applied nano-silicon could be used to improve the CWP and seed and biological yields of faba bean plants under conditions with low water availability in arid environments.

12.
J Appl Microbiol ; 131(6): 2886-2898, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34062037

RESUMEN

AIMS: Several fungal endophytes were isolated from some medicinal plants and screened for their ability to produce the anticancer drug vinblastine. METHODS AND RESULTS: An isolate was found to produce vinblastine (205·38 µg l-1 ), and the identity of the fungal vinblastine was confirmed by UV spectroscopic, high-performance liquid chromatography and electrospray ionization mass spectrometry analyses. Based on both morphological and molecular studies, the vinblastine-producing strain was identified as Alternaria alternata. Cytotoxic activities of the fungal vinblastine were evaluated against CHO-K1, MCF-7 and HepG-2 cell lines by the MTT assay. The proliferation of these cell lines was inhibited after treatment with fungal vinblastine and the recorded IC50 values of the respective cell lines were 12·15, 8·55 and 7·48 µg ml-1 . A strain improvement programme for improving vinblastine productivity by the fungal strain was also used. In addition, 10 broth media were evaluated for further increasing the production of vinblastine. The yield of vinblastine was intensified by 3·98-fold following gamma irradiation at 1000 Gy, and a stable mutant strain was isolated. Among the screened media, M1D broth (pH 6·0) stimulated the highest vinblastine production of 1553·62 µg l-1 by the isolated mutant strain. CONCLUSIONS: The present study is the first report on the production and yield improvement of the anticancer drug vinblastine by A. alternata. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings suggest A. alternata as a viable and potent source with excellent biotechnological potential for the production of vinblastine.


Asunto(s)
Antineoplásicos , Vinblastina , Alternaria , Endófitos/genética , Mutagénesis , Vinblastina/farmacología
13.
Naunyn Schmiedebergs Arch Pharmacol ; 393(10): 1887-1898, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32430618

RESUMEN

BACKGROUND: Retinoid receptors (RRs), RAR-α and RXR-α, work as transcription factors that regulate cell growth, differentiation, survival, and death. Hepatic stellate cells (HSCs) store retinoid and release its RRs as lipid droplets upon their activation. PURPOSE: We test the hypothesis that loss of retinoid receptors RAR-α and RXR-α from HSCs is dependent on tissue factor (TF) during thioacetamide (TAA)-induced liver injury. METHODS: Liver toxicity markers, TF, fibrin, cleaved caspase-3, and cyclin D1 as well as histopathology were investigated. RESULTS: Increased TF, fibrin, cleaved caspase-3, and cyclin D1 protein expression is seen in zone of central vein after TAA injection compared with vehicle-treated mice. A strong downregulation of RAR-α and RXR-α is seen in TAA-induced liver injury. In addition, histopathological obliteration and pericentral expression of cleaved caspase 3 and cyclin D1 are observed after TAA injection compared with the normal vehicle-treated mice. No changes have been seen in TAA/TF-sense (SC) in whole parameters compared with TAA-treated animals. TAA/TF-antisense (AS)-treated mice show normal expression of all parameters and normal histopathological features when compared with the control mice. In conclusion, this study declares that the strong downregulation of RAR-α and RXR-α may cause liver injury and particularly activation of HSCs in TAA-induced toxicity. TF-AS treatment not only downregulates TF protein expression but also alleviates loss of liver RAR-α and RXR-α and suppresses the activated apoptosis signals in TAA-induced liver toxicity. Finally, TF and RAR-α/RXR-α are important regulatory molecules in TAA induced acute liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Oligonucleótidos Antisentido/farmacología , Tioacetamida/toxicidad , Tromboplastina/antagonistas & inhibidores , Tromboplastina/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Masculino , Ratones , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptor alfa X Retinoide/metabolismo
14.
Animals (Basel) ; 10(5)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392878

RESUMEN

As a result of the global industrial revolution, contamination of the ecosystem by heavy metals has given rise to one of the most important ecological and organismic problems, particularly human, early developmental stages of fish and animal life. The bioaccumulation of heavy metals in fish tissues can be influenced by several factors, including metal concentration, exposure time, method of metal ingestion and environmental conditions, such as water temperature. Upon recognizing the danger of contamination from heavy metals and the effects on the ecosystem that support life on earth, new ways of monitoring and controlling this pollution, besides the practical ones, had to be found. Diverse living organisms, such as insects, fish, planktons, livestock and bacteria can be used as bioindicators for monitoring the health of the natural ecosystem of the environment. Parasites have attracted intense interest from parasitic ecologists, because of the variety of different ways in which they respond to human activity contamination as prospective indices of environmental quality. Previous studies showed that fish intestinal helminths might consider potential bioindicators for heavy metal contamination in aquatic creatures. In particular, cestodes and acanthocephalans have an increased capacity to accumulate heavy metals, where, for example, metal concentrations in acanthocephalans were several thousand times higher than in host tissues. On the other hand, parasitic infestation in fish could induce significant damage to the physiologic and biochemical processes inside the fish body. It may encourage serious impairment to the physiologic and general health status of fish. Thus, this review aimed to highlight the role of heavy metal accumulation, fish histopathological signs and parasitic infestation in monitoring the ecosystem pollutions and their relationship with each other.

15.
Bioorg Chem ; 99: 103781, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222620

RESUMEN

A series of novel 2-Amino-4-Methylthiazole analogs were developed via three-step reaction encompassing hydrazine-1-carboximidamide motif to combat Gram-positive and Gram-negative bacterial and fungal infections. Noticeably, the thiazole-carboximidamide derivatives 4a-d displayed excellent antimicrobial activity and the most efficacious analogue 4d with MIC/MBC values of 0.5 and 4 µg/mL, compared to reference drugs with very low toxicity to mammalian cells, resulting in a prominent selectivity more than 100 folds. Microscopic investigation of 4d biphenyl analogue showed cell wall lysis and promote rapid bactericidal activity though disrupting the bacterial membrane. In addition, an interesting in vitro investigation against GlcN-6-P Synthase Inhibition was done which showed potency in the nanomolar range. Meanwhile, this is the first study deploying a biomimicking strategy to design potent thiazole-carboximidamides that targeting GlcN-6-P Synthase as antimicrobial agents. Importantly, Molecular modeling simulation was done for the most active 4d analogue to study the interaction of this analogue which showed good binding propensity to glucosamine binding site which support the in vitro data.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/antagonistas & inhibidores , Tiazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Aspergillus niger/efectos de los fármacos , Aspergillus oryzae/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Candida albicans/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Estructura Molecular , Pseudomonas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
16.
Environ Monit Assess ; 192(3): 174, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32052191

RESUMEN

Association of trace metal concentrations in water is problematic; however, its information is scarce and sometimes contradicted. This work presents variations in dissolved major constituents and trace element concentrations along the quaternary aquifers located in middle Upper Egypt (Minia and Assiut governorates). A total of 205 groundwater samples from these aquifers were collected. Auxiliary parameters (pH, alkalinity, and conductivity), major cations (Ca2+, Mg2+, Na+, and K+), dominant anions (HCO3-, SO42-, Cl-, and NO3-), and trace element (B, Fe, Cu, Mn, Ni, Pb, Cd, and Cr) concentrations were measured in all samples. Univariate (correlation coefficient and scatter matrix) analysis was employed combined with multivariate (principal coordinates analysis) analysis to identify the chemical characteristics of groundwater that are responsible for generating most of the variability within the dataset. Also, hierarchical cluster analysis was applied to classify the geochemical origin of the groundwater constituents. The results indicate that the groundwater pollution is mainly due to water-rock interactions, including aquifer matrix dissolution, redox reaction of trace metals, input from wastewater, and agricultural fertilizers.


Asunto(s)
Agua Subterránea , Oligoelementos , Contaminantes Químicos del Agua , Egipto , Monitoreo del Ambiente
17.
J Appl Microbiol ; 128(6): 1634-1646, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31954094

RESUMEN

AIMS: Zinc oxide nanoparticles (ZnONPs) were successfully synthesized using the culture filtrate of the endophytic fungus Alternaria tenuissima as a rapid, eco-friendly and cost-effective method. METHODS AND RESULTS: The rapid synthesis of ZnONPs was completed after 20 min as confirmed by UV-Vis spectroscopy. The synthesized ZnONPs showed a single-phase crystalline structure. Dynamic light scattering analysis showed that the synthesized ZnONPs were monodispersed and the recorded polydispersity index value was 0·311. Zeta potential value of -23·92 mV indicated the high stability of ZnONPs. Transmission electron microscope revealed the spherical shape and the mean particle size was 15.45 nm. Functional groups present in the prepared samples of ZnONPs were confirmed by Fourier transform infrared spectroscopy. Additionally, the biological activities of in vitro antimicrobial, anticancer, antioxidant as well as the photocatalytic activities were evaluated. ZnONPs showed broad spectrum of antimicrobial potential against all the tested plant and human pathogens. Based on the MTT assay, ZnONPs inhibited the proliferation of normal human melanocytes, human breast and liver cancer cell lines with IC50 concentrations of 55·76, 18·02 and 16·87 µg ml-1 . ZnONPs exhibited promising antioxidant potential with 50% inhibitory concentration of 102·13 µg ml-1 . Moreover, ZnONPs showed efficient degradation of methylene blue dye. CONCLUSIONS: The synthesized ZnONPs showed promising activities that can be better explored in the near future for many medical, agricultural and industrial applications. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests a new and alternate approach with the excellent biotechnological potentiality for the production of ZnONPs which could open up the way for the industrial manufacture of nanoparticles using microbial platforms.


Asunto(s)
Alternaria/metabolismo , Nanopartículas del Metal/química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Línea Celular , Humanos , Tamaño de la Partícula , Procesos Fotoquímicos
18.
J Appl Microbiol ; 128(5): 1427-1439, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31912646

RESUMEN

AIMS: Paclitaxel is the most profitable drug ever developed in cancer chemotherapy; however, the yield of paclitaxel from microbial platforms is still far from the commercial purpose. Thus, this study was conducted to explore the possibility of solid-state fermentation (SSF) for production of paclitaxel by fungal fermentation. METHODS AND RESULTS: Different agro-industrial wastes were screened as solid substrates for production of paclitaxel by the endophytic Aspergillus fumigatus TXD105 under SSF. Sugarcane bagasse followed by wheat bran, and rice bran were the most suitable substrates for maximum production of paclitaxel. In the effort to increase the paclitaxel production, selection of the most proper moistening agent that supports the production of paclitaxel by the fungal strain was investigated. The effect of varying inoculum concentrations on the production of paclitaxel was also studied. Moreover, optimization of SSF conditions (moisture level, substrate concentrations and nutrients concentration) was adopted using response surface methodology. SSF carried out under the optimum conditions of 20 g sugarcane bagasse, twofold nutrients concentration of the MM1D broth, 80% moisture level and inoculum concentration of 107 spores per ml intensified the paclitaxel concentration to 145·61 mg kg-1 which represents a 10-fold increase. The production of paclitaxel by the fungal strain was further improved via exposure to UV and gamma radiation at specific doses. The paclitaxel concentrations were intensified following UV and gamma radiation to 209·91 and 351·82 mg kg-1 . CONCLUSIONS: This is the first report on the production of paclitaxel using agro-industrial wastes as cheap source that may contribute in lowering the cost of producing paclitaxel. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings offer new and alternate sources with excellent biotechnological potential for paclitaxel production by fungal fermentation.


Asunto(s)
Agricultura , Aspergillus fumigatus/metabolismo , Paclitaxel/biosíntesis , Eliminación de Residuos , Aspergillus fumigatus/efectos de la radiación , Grano Comestible/química , Fermentación , Rayos gamma , Rayos X
19.
J Appl Microbiol ; 128(3): 747-762, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31710165

RESUMEN

AIMS: Different endophytic fungi were isolated and screened for their digoxin-producing ability. Strain improvement and different culture conditions were studied for more effective production of digoxin. METHODS AND RESULTS: Among the isolated fungi, an isolate produced digoxin in a concentration of 2·07 mg l-1 . The digoxin-producing fungal isolate was identified as Epicoccum nigrum Link according to the morphological features and phylogenetic analyses. The potentiality of the fungal strain for production enhancement of digoxin was performed by gamma radiation mutagenesis. Gamma irradiation dose of 1000 Gy intensified the digoxin yield by five-fold. Using this dose, a stable mutant strain with improved digoxin productivity was isolated and the stability for digoxin production was followed up across four successive generations. In the effort to increase digoxin magnitude, selection of the proper cultivation medium, addition of some elicitors to the most proper medium and several physical fermentation conditions were tested. Fermentation process carried out in malt extract autolysate medium (pH 6·5) supplemented by methyl jasmonate and inoculated with 2 ml of 6-day-old culture and incubated at 25°C for 10 days stimulated the highest production of digoxin to attain 50·14 mg l-1 . Moreover, cytotoxicity of digoxin separated from the fungal culture was tested against five different cancer cell lines. Based on the MTT assay, digoxin inhibited the proliferation of the five different cancer cell lines and the recorded 50% inhibitory concentration ranged from 10·76 to 35·14 µg ml-1 . CONCLUSIONS: This is the first report on the production and enhancement of digoxin using fungal fermentation as a new and alternate source with high productivity. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings offer new and alternate sources with excellent biotechnological potential for digoxin production by fungal fermentation. Moreover, digoxin proved to be a promising anticancer agent whose anticancer potential should be assessed in prospective cancer therapy.


Asunto(s)
Antineoplásicos/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Digoxina/metabolismo , Animales , Antineoplásicos/farmacología , Ascomicetos/aislamiento & purificación , Ascomicetos/efectos de la radiación , Células CHO , Línea Celular Tumoral , Cricetulus , Digoxina/farmacología , Endófitos/genética , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Endófitos/efectos de la radiación , Fermentación , Rayos gamma , Humanos , Mutagénesis , Filogenia
20.
Life Sci ; 234: 116786, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31445934

RESUMEN

Extensive degeneration of articular cartilage (AC) is a primary event in the pathogenesis of osteoarthritis (OA) and other types of joint and bone inflammation. OA results in the loss of joint function, usually accompanied by severe pain, and are the most common type of arthritis, affecting more than 10% of adults. The characteristic signs of OA are progressive cartilage destruction and, eventually, complete loss of chondrocytes. A key enzyme responsible for these degenerative changes in cartilage is matrix metalloproteinase-13 (MMP-13), which is thought to be a major contributor to the degenerative process occurring during OA pathogenesis. The aim of the present review is to shed light on the general role of MMPs, with special emphasis on MMP-13, in the induction of OA and the general basis of OA treatment. The pathogenic mechanism of this highly prevalent disease is not clear, and no effective disease-modifying treatment is currently available. Any updated information about OA treatment in human patients will also benefit companion animals such as horses and dogs, which also suffer from OA. Selective inhibition of MMP-13 seems to be an attractive therapeutic strategy.


Asunto(s)
Cartílago Articular/patología , Matriz Extracelular/patología , Metaloproteinasas de la Matriz/inmunología , Osteoartritis/patología , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/inmunología , Cartílago Articular/metabolismo , Descubrimiento de Drogas , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/inmunología , Matriz Extracelular/metabolismo , Humanos , Metaloproteinasa 13 de la Matriz/análisis , Metaloproteinasa 13 de la Matriz/inmunología , Metaloproteinasa 13 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Metaloproteinasas de la Matriz/análisis , Metaloproteinasas de la Matriz/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/inmunología , Osteoartritis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA