Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Dermatol Res Pract ; 2024: 5551774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184919

RESUMEN

Currently, retinoids are known for their abundant benefits to skin health, ranging from reducing signs of aging and decreasing hyperpigmentation to treating acne. However, it cannot be denied that there are various side effects associated with the use of retinoids on the skin, one of which is irritation. Several approaches can be employed to minimize the irritation caused by retinoids. This review article discusses topical retinoid formulation technology strategies to reduce skin irritation effects. The methodology used in this study is a literature review of 21 reference journals. The sources used in compiling this review are from PubMed, Scopus, ScienceDirect, and MEDLINE. The findings obtained indicate that the following methods can be used to lessen retinoid-induced irritation in topical formulations: developing drug delivery systems in the formulation, such as encapsulating retinoids, transforming retinoids into nanoparticles, forming complexes (e.g., with cyclodextrin), and binding retinoids with carriers (e.g., polymers, NLC, SLN), adding ingredients with anti-irritation activity, skin barrier improvement, and increased skin hydration to retinoid formulations (e.g., combinations of glucosamine, trehalose, ectoine, sucralfate, omega-9, and 4-t-butylcyclohexanol, addition of ethanolic bark extract of Alstonia scholaris R. Br).

2.
Int J Nanomedicine ; 19: 8091-8113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161361

RESUMEN

The current treatments for wound healing still exhibit drawbacks due to limited availability at the action sites, susceptibility to degradation, and immediate drug release, all of which are detrimental in chronic conditions. Nano-modification strategies, offering various advantages that can enhance the physicochemical properties of drugs, have been employed in efforts to maximize the efficacy of wound healing medications. Nowadays, nanostructured lipid carriers (NLCs) provide drug delivery capabilities that can safeguard active compounds from environmental influences and enable controlled release profiles. Consequently, NLCs are considered an alternative therapy to address the challenges encountered in wound treatment. This review delves into the application of NLCs in drug delivery for wound healing, encompassing discussions on their composition, preparation methods, and their impact on treatment effectiveness. The modification of drugs into the NLC model can be facilitated using relatively straightforward technologies such as pressure-based processes, emulsification techniques, solvent utilization methods, or phase inversion. Moreover, NLC production with minimal material compositions can accommodate both single and combination drug delivery. Through in vitro, in vivo, and clinical studies, it has been substantiated that NLCs can enhance the therapeutic potential of various drug types in wound healing treatments. NLCs enhance efficacy by reducing the active substance particle size, increasing solubility and bioavailability, and prolonging drug release, ensuring sustained dosage at the wound site for chronic wounds. In summary, NLCs represent an effective nanocarrier system for optimizing the bioavailability of active pharmacological ingredients in the context of wound healing.


Asunto(s)
Portadores de Fármacos , Lípidos , Nanoestructuras , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Humanos , Portadores de Fármacos/química , Lípidos/química , Nanoestructuras/química , Animales , Tamaño de la Partícula , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Preparaciones de Acción Retardada/química , Disponibilidad Biológica
3.
Pharmaceutics ; 16(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39204388

RESUMEN

Chitosan nanoparticles (CSNPs) are promising vehicles for targeted and controlled drug release. Recognized for their biodegradability, biocompatibility, low toxicity, and ease of production, CSNPs represent an effective approach to drug delivery. Encapsulating drugs within nanoparticles (NPs) provides numerous benefits compared to free drugs, such as increased bioavailability, minimized toxic side effects, improved delivery, and the incorporation of additional features like controlled release, imaging agents, targeted delivery, and combination therapies with multiple drugs. Keys parameters in nanomedicines are drug loading content and drug loading efficiency. Most current NP systems struggle with low drug loading, presenting a significant challenge to the field. This review summarizes recent research on developing CSNPs with high drug loading capacity, focusing on various synthesis strategies. It examines CSNP systems using different materials and drugs, providing details on their synthesis methods, drug loadings, encapsulation efficiencies, release profiles, stability, and applications in drug delivery. Additionally, the review discusses factors affecting drug loading, providing valuable guidelines for future CSNPs' development.

4.
Drug Des Devel Ther ; 18: 1297-1312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681204

RESUMEN

Recurrent aphthous stomatitis (RAS) refers to a sore and frequently recurring inflammation of the oral tissues, distinguished by the presence of small ulcers that cause significant discomfort and cannot be attributed to any underlying disease. Different treatments have been used for RAS. This review aims to provide a comprehensive overview of the treatment options over the past decade for recurrent aphthous stomatitis (RAS), encompassing both natural and synthetic treatments. It will utilize clinical efficacy studies conducted in vivo and in vitro, along with a focus on the pharmaceutical approach through advancements in drug delivery development. We conducted a thorough literature search from 2013 to 2023 in prominent databases such as PubMed, Scopus, and Cochrane, utilizing appropriate keywords of recurrent aphthous stomatitis, and treatment. A total of 53 clinical trials with 3022 patients were included, with 35 using natural materials in their research and a total of 16 articles discussing RAS treatment using synthetic materials. All the clinical trials showed that natural and synthetic medicines seemed to benefit RAS patients by reducing pain score, ulcer size, and number of ulcers and shortening the healing duration.


Asunto(s)
Estomatitis Aftosa , Estomatitis Aftosa/tratamiento farmacológico , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/química , Drogas Sintéticas/uso terapéutico
5.
Infect Drug Resist ; 17: 791-805, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444772

RESUMEN

Untreated topical infections can become chronic, posing serious health issues. Optimal skin adherence is crucial in addressing such infections. In this context, chitosan and alginate emerge as promising candidates for use as a foundation in the development of topical hydrogels. The aim of this review is to examine the literature on topical hydrogel formulations that use chitosan and alginate as foundations, specifically in the context of topical antibacterial agents. The research methodology involves a literature review by examining articles published in databases such as PubMed, Scopus, ScienceDirect, and Google Scholar. The keywords employed during the research were "Alginate", "Chitosan", "Hydrogel", and "Antibacterial". Chitosan and alginate serve as bases in topical hydrogels to deliver various active ingredients, particularly antibacterial agents, as indicated by the search results. Both have demonstrated significant antibacterial effectiveness, as evidenced by a reduction in bacterial colony counts and an increase in inhibition zones. This strongly supports the idea that chitosan and alginate could be used together to make topical hydrogels that kill bacteria that work well. In conclusion, chitosan and alginate-based hydrogels show great potential in treating bacterial infections on the skin surface. The incorporation of chitosan and alginate into hydrogel formulations aids in retaining antibacterial agents, allowing for their gradual release over an optimal period. Therefore, hydrogels specifically formulated with chitosan and alginate have the potential to serve as a solution to address challenges in the treatment of topical bacterial infections.

6.
Int J Nanomedicine ; 19: 2733-2754, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505165

RESUMEN

Nanohydrogels (NH) are biodegradable polymers that have been extensively studied and utilized for various biomedical applications. Drugs in a topical medication are absorbed via the skin and carried to the intended location, where they are metabolized and eliminated from the body. With a focus on their pertinent contemporary treatments, this review aims to give a complete overview of recent advances in the creation and application of polymer NH in biomedicine. We will explore the key features that have driven advances in nanotechnology and discuss the significance of nanohydrogel-based formulations as vehicles for delivering therapeutic agents topically. The review will also cover the latest findings and references from the literature to support the advancements in nanotechnological technology related to the preparation and application of NH. In addition, we will also discuss the unique properties and potential applications of NH as drug delivery systems (DDS) for skin applications, underscoring their potential for effective topical therapeutic delivery. The challenge lies in efficiently delivering drugs through the skin's barrier to specific areas with high control. Environmentally sensitive systems, like polymer-based NH, show promise in treating dermatological conditions. Polymers are pivotal in developing these drug delivery systems, with NH offering advantages such as versatile drug loading, controlled release, and enhanced skin penetration.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Piel/metabolismo , Polímeros/metabolismo , Preparaciones Farmacéuticas , Nanotecnología
7.
Int J Nanomedicine ; 19: 825-844, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38293608

RESUMEN

Nanosuspensions have garnered recent attention as a promising strategy for mitigating the bioavailability challenges of hydrophobic drugs, particularly those characterized by poor solubility in both aqueous and organic environments. Addressing solubility issues associated with poorly water-soluble drugs has largely resolved the need to enhance drug absorption and bioavailability. As mucosal formulations and topical administration progress in the future, nanosuspension drug delivery, straightforward formulation techniques, and versatile applications will continue to be subjects of interest. Nanosuspensions have undergone extensive scrutiny in preparation for topical applications, encompassing ocular, pulmonary, and dermal usage. Among the numerous methods aimed at improving cutaneous application, nanocrystals represent a relatively recent yet profoundly intriguing approach. Despite the increasing availability of various nanosuspension products, primarily designed for oral administration, only a limited number of studies have explored skin permeability and drug accumulation in the context of nanosuspensions. Nevertheless, the scant published research unequivocally underscores the potential of this approach for enhancing cutaneous bioavailability, particularly for active ingredients with low to medium solubility. Nanocrystals exhibit increased skin adhesiveness in addition to heightened saturation solubility and dissolution rate, thereby augmenting cutaneous distribution. The article provides a comprehensive overview of nanosuspensions for topical application. The methodology employed is robust, with a well-defined experimental design; however, the limited sample size raises concerns about the generalizability of the findings. While the results demonstrate promising outcomes in terms of enhanced drug delivery, the discussion falls short of addressing certain limitations. Additionally, the references largely focus on recent studies, but a more diverse inclusion of historical perspectives could offer a more holistic view of the subject.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Suspensiones , Sistemas de Liberación de Medicamentos/métodos , Disponibilidad Biológica , Nanopartículas/química , Administración Oral , Solubilidad , Tamaño de la Partícula
8.
Heliyon ; 9(12): e22839, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058433

RESUMEN

Background: The advantages and disadvantages of casirivimab-imdevimab for coronavirus disease 2019 are not well understood. We conducted a systematic review and meta-analysis of relevant literature to determine the therapeutic effectiveness and potential side effects of casirivimab-imdevimab in COVID-19 patients. Methods: Databases were searched from the time of their commencement until February 28th, 2023. The primary results evaluated were the death rate at 28 days, progression of current clinical symptoms within 28 days, viral load, discharge from hospital, and any adverse events. Also, we contrasted the effects of the casirivimab-imdevimab treatment with placebo or standard of care. The protocol registration for this systematic review and meta-analysis was recorded in the PROSPERO database (CRD42023412835). Results: A total of eight studies were included, comprising 19,819 patients, and conducted a qualitative assessment of their risk of bias using the Cochrane risk of bias tool. Casirivimab-imdevimab effectively reduced the mortality rate (OR = 0.62; 95 % CI of 0.40-0.98; p = 0.04; I2 = 30 %) and reduced the progression of clinical symptoms (OR = 0.86; 95 % CI of 0.79-0.93; p = 0.0003; I2 = 57 %). Casirivimab-imdevimab also improved viral load clearance and hospital discharge. Additionally, the trials' findings demonstrated a slight decrease in the likelihood of adverse events occurring with the use of casirivimab-imdevimab. Conclusion: Our research suggests that casirivimab-imdevimab may be a valuable, safe, and effective anti-SARS-CoV-2 regimen.

9.
Integr Pharm Res Pract ; 12: 213-225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021082

RESUMEN

Background: Telepharmacy, a digital technology-driven approach, has emerged as a potential solution to address the challenges posed by this pandemic. Telepharmacy is a method used in pharmaceutical practice where a pharmacist utilizes telecommunications technology to supervise aspects of pharmacy operations or provide patient care services. This study aimed to assess pharmacists' level of knowledge, perception, and readiness toward telepharmacy in Indonesia. Methods: A cross-sectional approach was used in this study, and non-probabilistic purposive sampling technique was used to select respondents who were Indonesian pharmacists. The Telepharmacy Knowledge, Perception, and Readiness questionnaire, translated into Indonesian and administered online, was used to measure the pharmacist's knowledge, perception, and readiness level. Descriptive and inferential data analyses were performed using SPSS version 26, with a p-value of ≤0.05 considered statistically significant. Results: A total of 378 responses were obtained, with 96.83% exhibiting high knowledge and 63.23% showing high readiness for telepharmacy services. Furthermore, 58.20% of respondents had a positive perception of telepharmacy services. The results indicate a significant influence of pharmacist's knowledge and perception on their readiness to implement telepharmacy services in the future practice. Conclusion: Most study participants had sufficient knowledge, positive perceptions, and readiness to implement telepharmacy services in their future pharmaceutical practice. However, they expressed concerns about the potential for an increased workload and the potential lack of incentives associated with the widespread adoption of telepharmacy practice models. Telepharmacy practice models must be included in the training programs that train future's pharmacists in order to ensure that they have the abilities required to offer telepharmacy services.

10.
Heliyon ; 9(7): e18044, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483826

RESUMEN

Ulvan is a polysaccharide from green algae that shows good hydrogel film dressing characteristics. Silver nanoparticles (AgNP) can be incorporated into the hydrogel film to improve antibacterial properties and provide a potential burn treatment. In this study, we developed a novel hydrogel film wound dressing composed of ulvan and silver nanoparticles. Two concentrations (0.5 mM and 1 mM) of silver nitrate were used to produce ulvan-silver nanoparticles hydrogel film (UHF-AgNP0.5 and UHF-AgNP1), respectively. The physicochemical characteristics of the hydrogel films were evaluated, including particle size, zeta potential, Fourier transform infrared (FTIR), X-ray diffractometry (XRD), scanning electron microscope and energy-dispersive X-ray (SEM-EDX). Furthermore, the in vitro antimicrobial activity, and second-degree burn wound healing test were evaluated. The UHF-AgNP0.5 showed the highest antimicrobial activity compared to UHF-AgNP1 and UHF film. Meanwhile, an in vivo study using Wistar rats induced second-degree burns showed that UHF-AgNP0.5 significantly accelerated the healing process by regulating the inflammatory process, increasing re-epithelialization, and improving the vascularization process. Ulvan-silver nanoparticle hydrogel films have the ability to accelerate the healing of second-degree burns and are potential candidates for wound dressings.

11.
J Multidiscip Healthc ; 16: 451-459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846613

RESUMEN

After the COVID-19 pandemic, telepharmacy has become increasingly widely used as an alternative to pharmaceutical care by remote pharmacists. Patients with diabetes mellitus are one of the patients who get benefit the most from telepharmacy practices, which allow patients to consult without meeting face to face and minimize the risk of virus transmission. The authors conduct an assessment of the benefits and limitations of using telepharmacy that are used throughout the world and then hopes that they can become a reference in the development of telepharmacy in the future. A total of 23 relevant articles were used for analysis in this narrative review after searching for articles in three sources, including PubMed, Google Scholar and ClinicalTrials.gov, until October 2022. This narrative review shows that telepharmacy plays an important role in improving clinical outcomes, patient therapy adherence and reduce the number of patient visit and hospitalization, but telepharmacy also has limitations in its use related to security and privacy, as well as pharmacist intervention that has not been maximized. However, telepharmacy has great potential to facilitate diabetes mellitus patients in pharmaceutical services.

12.
Polymers (Basel) ; 15(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36850308

RESUMEN

Alpha mangostin (AM) has potential anticancer properties for breast cancer. This study aims to assess the potential of chitosan nanoparticles coated with hyaluronic acid for the targeted delivery of AM (AM-CS/HA) against MCF-7 breast cancer cells. AM-CS/HA showed a spherical shape with an average diameter of 304 nm, a polydispersity index of 0.3, and a negative charge of 24.43 mV. High encapsulation efficiency (90%) and drug loading (8.5%) were achieved. AM released from AM-CS/HA at an acidic pH of 5.5 was higher than the physiological pH of 7.4 and showed sustained release. The cytotoxic effect of AM-CS/HA (IC50 4.37 µg/mL) on MCF-7 was significantly higher than AM nanoparticles without HA coating (AM-CS) (IC50 4.48 µg/mL) and AM (IC50 5.27 µg/mL). These findings suggest that AM-CS/HA enhances AM cytotoxicity and has potential applications for breast cancer therapy.

13.
Int J Pharm ; 631: 122536, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36572262

RESUMEN

Nature serves as a priceless source for phytomedicines to treat different types of cancer, including hepatocellular carcinoma (HCC). Apocynin (APO), an anti-cancer phytomedicine, is a particular nicotinamide adenine dinucleotide phosphate-oxidase (NADPH-oxidase) inhibitor, which has recently dawned for its multilateral pharmacological activities. As far as we are aware, no investigation has been carried out yet to develop a targeted-nanostructured delivery system of APO to HCC. Consequently, chitosan derivative with galactose groups namely; galactosylated chitosan (GC), particularly recognized by the asialoglycoprotein receptor (ASGR), was synthesized and its chemical structure was thoroughly characterized by substantial techniques. Afterwards, GC-coated nanoplatform for hepatocyte attachment "APO-loaded galactosylated chitosan-coated poly(d,l-lactide-co-glycolide) nanoparticles (APO-loaded GC-coated PLGA NPs)" was developed. The prosperous APO-loaded GC-coated PLGA NPs would be comprehensively appraised through extensive investigations. Their solid state characterization using Fourier transform-infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry proved APO's encapsulation in the polymeric matrix. Transmission electron microscopy imaging of the investigated NPs highlighted their spherical architecture with a nanosized range and a characteristic halo-like appearance traceable to the GC coating of the NPs' surface. Saliently, the results of in vitro cytotoxicity screening revealed the spectacular anti-cancer efficacy of APO-loaded GC-coated PLGA NPs formula against the HepG2 cell line. Moreover, the fluorescence microscope disclosed the distinguished cellular uptake of such formula via ASGPR mediated endocytosis. Inclusively, a multifunctional nano-phytomedicine delivery system with a promising active hepatocyte-targeting, effective uptake into HepG2 cells, and sustained drug release pattern was successfully developed.


Asunto(s)
Carcinoma Hepatocelular , Quitosano , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Quitosano/química , Receptor de Asialoglicoproteína , Nanomedicina , Estudios Prospectivos , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Oxidorreductasas/uso terapéutico , Portadores de Fármacos/química , Tamaño de la Partícula
14.
Molecules ; 27(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557827

RESUMEN

Most recently discovered active pharmaceutical molecules and market-approved medicines are poorly soluble in water, resulting in limited drug bioavailability and therapeutic effectiveness. The application of coformers in a multicomponent crystal method is one possible strategy to modulate a drug's solubility. A multicomponent crystal is a solid phase formed when several molecules of different substances crystallize in a crystal lattice with a certain stoichiometric ratio. The goal of this review paper is to comprehensively describe the application of coformers in the formation of multicomponent crystals as solutions for pharmaceutically active ingredients with limited solubility. Owing to their benefits including improved physicochemical profile of pharmaceutically active ingredients, multicomponent crystal methods are predicted to become increasingly prevalent in the development of active drug ingredients in the future.


Asunto(s)
Agua , Cristalización/métodos , Solubilidad , Disponibilidad Biológica , Preparaciones Farmacéuticas
15.
ACS Macro Lett ; 11(11): 1225-1229, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36215131

RESUMEN

To achieve a systemic targeted delivery of siRNA using polymeric carriers, there is a dilemma between ligand modification and stabilization of the polyplex. Namely, ligand modification often leads to destabilization of the polyplex in the blood circulation. In fact, we previously developed cyclodextrin (CD)/polyamidoamine dendrimer conjugates (CDE) as siRNA carriers, and the interaction of CDE/siRNA was decreased by the conjugation with folate-polyethylene glycol, leading to the destabilization. To overcome this dilemma, in this study, folate-appended polyrotaxanes (Fol-PRX) were developed. Fol-PRX stabilized CDE/siRNA polyplex by intermolecularly connecting CDE molecules through a host-guest interaction between adamantane at the terminals of Fol-PRX and ß-CD in the polyplex. Moreover, the intermolecular connection of the polyplex with Fol-PRX provided movable folate moieties on the surface. As a result, Fol-PRXs enhanced the in vivo antitumor activity of the polyplex after intravenous administration, suggesting their utility as the dual-functional materials for systemic delivery of siRNA polyplexes.


Asunto(s)
Rotaxanos , ARN Interferente Pequeño , Ácido Fólico , Ligandos , Polietilenglicoles
16.
Drug Deliv ; 29(1): 2959-2970, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36085575

RESUMEN

Lung cancer is the second most common type of cancer after breast cancer. It ranks first in terms of mortality rate among all types of cancer. Lung cancer therapies are still being developed, one of which makes use of nanoparticle technology. However, conjugation with specific ligands capable of delivering drugs more precisely to cancer sites is still required to enhance nanoparticle targeting performance. Monoclonal antibodies are one type of mediator that can actively target nanoparticles. Due to the large number of antigens on the surface of cancer cells, monoclonal antibodies are widely used to deliver nanoparticles and improve drug targeting to cancer cells. Unfortunately, these antibodies have some drawbacks, such as rapid elimination, which results in a short half-life and ineffective dose. As a result, many of them are formulated in nanoparticles to minimize their major drawbacks and enhance drug targeting. This review summarizes and discusses articles on developing and applying various types of monoclonal antibody ligand nanoparticles as lung cancer target drugs. This review will serve as a guide for the choice of nanoparticle systems containing monoclonal antibody ligands for drug delivery in lung cancer therapy.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias Pulmonares , Nanopartículas , Anticuerpos Monoclonales , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico
17.
Pharmaceutics ; 14(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36015335

RESUMEN

Recurrent aphthous stomatitis (RAS) is a prevalent clinical disorder that causes mouth ulcers. Furthermore, corticosteroid treatment has been widely utilized for RAS therapy; however, it has side effects on the oral mucosa that limit its application. This study aimed to develop a novel RAS therapy with the natural ingredient α-mangostin, delivered by alginate and chitosan polymers-based hydrogel film (α-M Alg/Chi-HF). To prepare α-M Alg/Chi-HF, the solvent evaporation and casting methods were used, then characterized by using SEM, FTIR, and XRD. Based on the characterization studies, the α-M in α-M/EtOH Alg/Chi-HF with ethanol (EtOH) was found to be more homogenous compared to α-M in Alg/Chi-HF with distilled water (H2O) as a casting solvent. The in vitro viability study using NIH3T3 cells showed 100% viability of α-M Alg/Chi-HF (EtOH) and Alg/Chi-HF after 24 h incubation, indicating well tolerability of these hydrogel films. Interestingly, the in vivo studies using male white rats (Rattus norvegicus Berkenhout) proved that α-M/EtOH Alg/Chi-HF with a recovery of 81.47 ± 0.09% in seven days significantly more effective RAS therapy compared to control. These results suggest that α-M/EtOH Alg/Chi-HF has the potential as an alternative for RAS therapy.

18.
Polymers (Basel) ; 14(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36015667

RESUMEN

Cancer is the most common cause of death worldwide; therefore, there is a need to discover novel treatment modalities to combat it. One of the cancer treatments is nanoparticle technology. Currently, nanoparticles have been modified to have desirable pharmacological effects by using chemical ligands that bind with their specific receptors on the surface of malignant cells. Chemical grafting of chitosan nanoparticles with hyaluronic acid as a targeted ligand can become an attractive alternative for active targeting. Hence, these nanoparticles can control drug release with pH- responsive stimuli, and high selectivity of hyaluronic acid to CD44 receptors makes these nanoparticles accumulate more inside cells that overexpress these receptors (cancer cells). In this context, we discuss the benefits and recent findings of developing and utilizing chitosan-hyaluronic acid nanoparticles against distinct forms of cancer malignancy. From here we know that chitosan-hyaluronic acid nanoparticles (CHA-Np) can produce a nanoparticle system with good characteristics, effectiveness, and a good active targeting on various types of cancer cells. Therefore, this system is a good candidate for targeted drug delivery for cancer therapy, anticipating that CHA-Np could be further developed for various cancer therapy applications.

19.
Polymers (Basel) ; 14(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35335547

RESUMEN

Secretomes of mesenchymal stem cells (MSCs) have been successfully studied in preclinical models for several biomedical applications, including tissue engineering, drug delivery, and cancer therapy. Hydrogels are known to imitate a three-dimensional extracellular matrix to offer a friendly environment for stem cells; therefore, hydrogels can be used as scaffolds for tissue construction, to control the distribution of bioactive compounds in tissues, and as a secretome-producing MSC culture media. The administration of a polymeric hydrogel-based MSC secretome has been shown to overcome the fast clearance of the target tissue. In vitro studies confirm the bioactivity of the secretome encapsulated in the gel, allowing for a controlled and sustained release process. The findings reveal that the feasibility of polymeric hydrogels as MSC -secretome delivery systems had a positive influence on the pace of tissue and organ regeneration, as well as an enhanced secretome production. In this review, we discuss the widely used polymeric hydrogels and their advantages as MSC secretome delivery systems in biomedical applications.

20.
Polymers (Basel) ; 13(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502930

RESUMEN

α-Mangostin (α-M) has various biological activities, such as anti-cancer, antibacterial, anti-fungal, anti-tyrosin, anti-tuberculosis, anti-inflammatory, and antioxidant. However, it has very low solubility in water. The formulation of this compound requires high amounts of solubilizers, which limits its clinical application. In addition, its low solubility in water is a barrier to the distribution of this drug, thus affecting its potency. Cyclodextrin (CD) is widely used as a solubility enhancer of poorly soluble drugs. This study aimed to increase the solubility of α-M in water through complex formation with CD. The complex of α-Mangostin and γ-Cyclodextrin (α-M/γ-CD CX) was prepared by the solubilization method, resulting in a solubility improvement of α-M in water. Characterization of α-M/γ-CD CX by using FTIR-Spectrometry, XRD, H-, C-, and HMBC-NMR showed that α-M was able to form an inclusion complex with γ-CD. The complex yielded an entrapment efficiency of 84.25 and the thermodynamic study showed that the α-M/γ-CD CX was formed spontaneously, based on the negative values of Gibbs energy and ΔH. Interestingly, the solubility of α-M/γ-CD CX significantly increased by 31.74-fold compared with α-M. These results suggest that α-M/γ-CD CX has the potential in the formulation of water-based preparation for clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA