Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
2.
RSC Adv ; 14(39): 28555-28568, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39247509

RESUMEN

Recently, molecular hybrids of two or more active pharmacophores have shown promise for designing and synthesizing anticancer drugs. Herein, a new multifunctional hybrid (PAHMQ), combining azobenzene and quinoline pharmacophores, and its M(ii) complexes (MPAHMQ) have been successfully developed and structurally characterized. The MTT assay revealed CuBHTP as the most efficient and safe breast cancer treatment, with an IC50 of 11.18 ± 0.39 µg mL-1 and a high selectivity index (SI) of 5.63 for cancer MCF-7 cells over healthy MCF10A cells. Moreover, the CuPAHMQ-treated MCF-7 cells experience a dramatic impact with regard to key apoptotic markers, including an increase in P53 and Bax expression, with a decrease in Bcl-2 expression levels compared to the untreated MCF-7 cells. Additionally, CuPAHMQ effectively halted the growth and division of MCF-7 cells by inducing cell cycle arrest in the crucial G1 and S phases, ultimately inhibiting both Topo II activity and cell proliferation. Molecular docking investigations validated the CuPAHMQ complex's groove binding and topoisomerase II binding, establishing it as a potent anticancer drug.

3.
J Inorg Biochem ; 262: 112720, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39243420

RESUMEN

This study investigated the effectiveness and safety of a hybrid thiosemicarbazone ligand (HL) and its metal complexes (MnII-L, FeIII-L, NiII-HL, and ZnII-HL) against epidermoid carcinoma (A-431). The results indicated that FeIII-L is the most effective, with a high selectivity index of 8.01 and an IC50 of 17.49 ± 2.12 µM for FeIII-L. The study also revealed that the synthesized complexes effectively inhibited gene expression of the Phosphoinositide 3-kinases (PI3K), alpha serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR2) axis mechanism (P < 0.0001). Additionally, these complexes trigger a chain of events that include the inhibition of proliferating cell nuclear antigen (PCNA), transforming growth factor ß1 (TGF ß1), and topoisomerase II, and leading to a decrease in epidermoid cell proliferation. Furthermore, the inhibitory activity also resulted in the upregulation of caspases 3 and 9, indicating the acceleration of apoptotic markers, and the down regulation of miRNA221, suggesting a decrease in epidermoid proliferation. Molecular modeling of FeIII-L revealed that it had the best binding energy -8.02 kcal/mol and interacted with five hydrophobic π-interactions with Val270, Gln79, Leu210, and Trp80 against AKT1. Furthermore, the binding orientation of FeIII-L with Topoisomerase II was found to be the most stable, with a binding energy -8.25 kcal/mol. This stability was attributed to the presence of five hydrophobic π-interactions with His759, Guanin13, Cytosin8, and Ala465, and numerous ionic interactions, which were more favorable than those of doxorubicin and etoposide for new regimens of chemotherapeutic activities against skin cancer.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39284929

RESUMEN

The synthesis of magnesium hydroxide nanoparticles (Mg(OH)2 NPs) using plant extracts are known to be a practical, economical, and an environmentally friendly approach. In this work, Mg(OH)2 NPs were synthesized using aqueous leaf extract of Tinospora cordifolia, a medicinal plant commonly found in India. The synthesized Mg(OH)2 NPs were characterized using various spectroscopic techniques. The ultraviolet-visible (UV-Vis) absorption peak of the Mg(OH)2 NPs was detected at 289 nm, Fourier transform infrared (FTIR) analysis confirmed the presence of various functional groups, and X-ray diffraction (XRD) patterns revealed the well-crystallized structure of the Mg(OH)2 NPs. High-resolution transmission electron microscopy (HR-TEM) and scanning electron microscopy (SEM) analyses depicted spherical morphology and an average particle size (PS) of 27.71 nm. The energy-dispersive X-ray (EDX) analysis confirmed the presence of C, O, and Mg elements, and the X-ray photoelectron spectroscopy (XPS) survey spectrum confirmed the elements for the Su 1 s peak at 280.2 eV. The dynamic light scattering (DLS) analysis displayed an average PS of 54.3 nm, and the Zeta potential (ZP) was of 9.89 mV. The fabricated Mg(OH)2 NPs displayed notable antibacterial activity against S. epidermidis, E. coli, and S. aureus. In addition, these NPs exhibited strong antioxidant properties (> 75%) based on DPPH, ABTS, and hydrogen peroxide (H2O2) assays. Further, the same NPs exerted a potent anti-inflammatory activity (> 65%) based on COX-1 and COX-2 evaluations. The anti-Alzheimer' disease (AD) potential of Mg(OH)2 NPs was assessed through effective inhibition (> 70%) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities. Molecular docking (MD) studies confirmed that caryophyllene has higher binding affinity with AChE (-5.3 kcal/mol) and BuChE (-6.4 kcal/mol) enzymes. This study emphasizes the green synthesis of Mg(OH)2 NPs using T. cordifolia as a plant source and highlights their potential for biomedical applications.

5.
Artif Cells Nanomed Biotechnol ; 52(1): 411-425, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39193730

RESUMEN

This study uses the aerial parts of Panicum maximum total extract (PMTE) to synthesize silver nanoparticles (AgNPs) in an environmentally friendly manner. TEM, SEM, FTIR, X-ray powder diffraction (XRD), Zeta potential, UV, and FTIR were used to characterize the green silver nanoparticles (PM-AgNPs). PM-AgNPs were evaluated as anticancer agents compared to (PMTE) against breast (MCF-7), lung (A549), and ovary adenocarcinoma (SKOV3) human tumour cells. The antibacterial activity of AgNPs was assessed against Staphylococcus aureus isolates. The PM-AgNPs had an absorbance of 418 nm, particle size of 15.18 nm, and zeta potential of -22.4 mV, ensuring the nanosilver's stability. XRD evaluated the crystallography nature of the formed PM-AgNPs. The cytotoxic properties of PM-AgNPs on MCF-7 and SKOV 3 were the strongest, with IC50s of 0.13 ± 0.015 and 3.5 ± 0.5 g/ml, respectively, as compared to A549 (13 ± 3.2 µg/mL). The increase in the apoptotic cells was 97.79 ± 1.61 and 96.6 ± 1.91% for MCF-7 and SKOV3 cell lines, respectively. PM-AgNPs were found to affect the membrane integrity and membrane permeability of 50 and 43.75% of the tested isolates, respectively. Also, PM-AgNPs have recorded a reduction in the biofilm formation of S. aurues. These results suggest using PM-AgNPs to treat breast and ovarian cancers.


Asunto(s)
Antibacterianos , Tecnología Química Verde , Nanopartículas del Metal , Simulación del Acoplamiento Molecular , Plata , Plata/química , Plata/farmacología , Humanos , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Línea Celular Tumoral , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Técnicas de Química Sintética , Células MCF-7
6.
Int J Biol Macromol ; 276(Pt 1): 133616, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009258

RESUMEN

BACKGROUND: Despite cisplatin's long history as a cornerstone in cancer therapy, both acquired chemoresistance and significant impacts on healthy tissues limit its use. Hepatotoxicity is one of its side effects. Adjunct therapies have shown promise in not only attenuating liver damage caused by cisplatin but also in enhancing the efficacy of chemotherapy. In this context, a new quaternary ammonium chitosan Schiff base (QACSB) was synthesized and applied as an encapsulating agent for the in-situ synthesis of QACSB-ZnO nanocomposite. MATERIAL AND METHODS: Thirty male albino rats were classified into Group 1 (control) distilled water, Group 2 (Cisplatin-treated) (12 mg/kg, i.p), and Group 3 (QACSB-ZnO NCs/cisplatin-treated) (150 mg/kg/day QACSB-ZnO NCs, i.p) for 14 days + a single dose of cisplatin. Liver functions, tissue TNF-α, MDA, and GSH were measured as well as histopathological and immunohistochemical studies were performed. RESULTS: The QACSB-ZnO NCs significantly restore liver functions, tissue TNF-α, MDA, and GSH levels (p < 0.001). Histopathological examination showed patchy necrosis in the cisplatin-treated group versus other groups. The QACSB-ZnO NCs showed a weak TGF-ß1 (score = 4) and a moderate Bcl-2 immunohistochemistry expression (score = 6) versus the CP group. CONCLUSIONS: QACSB-ZnO NCs have been shown to protect the liver from cisplatin-induced hepatotoxicity.


Asunto(s)
Quitosano , Cisplatino , Nanocompuestos , Compuestos de Amonio Cuaternario , Bases de Schiff , Óxido de Zinc , Animales , Cisplatino/efectos adversos , Bases de Schiff/química , Bases de Schiff/farmacología , Quitosano/química , Quitosano/farmacología , Ratas , Nanocompuestos/química , Masculino , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Glutatión/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Factor de Necrosis Tumoral alfa/metabolismo , Malondialdehído/metabolismo
7.
8.
PLoS One ; 19(6): e0302105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889115

RESUMEN

The present study was focused on exploring the efficient inhibitors of closed state (form) of type III effector Xanthomonas outer protein Q (XopQ) (PDB: 4P5F) from the 44 phytochemicals of Picrasma quassioides using cutting-edge computational analysis. Among them, Kumudine B showed excellent binding energy (-11.0 kcal/mol), followed by Picrasamide A, Quassidine I and Quassidine J with the targeted closed state of XopQ protein compared to the reference standard drug (Streptomycin). The molecular dynamics (MD) simulations performed at 300 ns validated the stability of top lead ligands (Kumudine B, Picrasamide A, and Quassidine I)-bound XopQ protein complex with slightly lower fluctuation than Streptomycin. The MM-PBSA calculation confirmed the strong interactions of top lead ligands (Kumudine B and QuassidineI) with XopQ protein, as they offered the least binding energy. The results of absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis confirmed that Quassidine I, Kumudine B and Picrasamide A were found to qualify most of the drug-likeness rules with excellent bioavailability scores compared to Streptomycin. Results of the computational studies suggested that Kumudine B, Picrasamide A, and Quassidine I could be considered potential compounds to design novel antibacterial drugs against X. oryzae infection. Further in vitro and in vivo antibacterial activities of Kumudine B, Picrasamide A, and Quassidine I are required to confirm their therapeutic potentiality in controlling the X. oryzae infection.


Asunto(s)
Antibacterianos , Simulación de Dinámica Molecular , Xanthomonas , Antibacterianos/farmacología , Antibacterianos/química , Xanthomonas/efectos de los fármacos , Quimioinformática/métodos , Simulación del Acoplamiento Molecular , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
9.
Int J Pharm X ; 7: 100238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511068

RESUMEN

The clinical advancement of protein-based nanomedicine has revolutionized medical professionals' perspectives on cancer therapy. Protein-based nanoparticles have been exploited as attractive vehicles for cancer nanomedicine due to their unique properties derived from naturally biomacromolecules with superior biocompatibility and pharmaceutical features. Furthermore, the successful translation of Abraxane™ (paclitaxel-based albumin nanoparticles) into clinical application opened a new avenue for protein-based cancer nanomedicine. In this mini-review article, we demonstrate the rational design and recent progress of protein-based nanoparticles along with their applications in cancer diagnosis and therapy from recent literature. The current challenges and hurdles that hinder clinical application of protein-based nanoparticles are highlighted. Finally, future perspectives for translating protein-based nanoparticles into clinic are identified.

10.
Environ Pollut ; 348: 123745, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38499169

RESUMEN

The article discusses the removal of methylene blue (MB) dye, a common cationic dye used in the textile industry, from aqueous solutions through an adsorption process. The use of porous components as adsorbents are shown to facilitate complete separation after the process is completed. The substrate was synthesized by connecting zinc copper ferrite (ZnCuFe2O4), polyethyleneimine (PEI), and Graphene Oxide (GO) sheets to MCM-48, which is a mesoporous material. The surface of MCM-48 was modified using CPTMS, which created an O-Si-Cl bridge, thereby improving the adsorption rate. The substrate was shown to have suitable sites for electrostatic interactions and creating hydrogen bonds with MB. The adsorption process from the Freundlich isotherm (R2 = 0.9224) and the pseudo-second-order diagram (R2 = 0.9927) demonstrates the adsorption of several layers of dye on the heterogeneous surface of the substrate. The synthesized substrate was also shown to have good bactericidal activity against E. coli and S. aureus bacterial strain. Furthermore, the substrate maintained its initial ability to adsorb MB dye for four consecutive cycles. The research resulted that ZnCuFe2O4@MCM-48/PEI-GO substrate has the potential for efficient and economical removal of MB dye from aqueous solutions (R = 88.82%) (qmax = 294.1176 mg. g-1), making it a promising solution for the disposal of harmful industrial waste.


Asunto(s)
Compuestos Férricos , Grafito , Nanopartículas , Contaminantes Químicos del Agua , Purificación del Agua , Dióxido de Silicio , Polietileneimina , Cobre , Zinc , Escherichia coli , Porosidad , Staphylococcus aureus , Antibacterianos/farmacología , Azul de Metileno/química , Purificación del Agua/métodos , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
11.
Int J Biol Macromol ; 263(Pt 1): 130694, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458284

RESUMEN

Zinc oxide (ZnO) has attracted a substantial interest in cancer research owing to their promising utility in cancer imaging and therapy. This study aimed to synthesized ZnO nanoflowers coated with albumin to actively target and the inhibit skin melanoma cells. We synthesized bovine serum albumin (BSA)-coated ZnO nanoflowers (BSA@ZnO NFs) and evaluated it's in vitro and in vivo therapeutic efficacy for skin cancer cells. BSA@ZnO NFs were prepared via single-step reduction method in the presence of plant extract (Heliotropium indicum) act as a capping agent, and further the successful fabrication was established by various physico-chemical characterizations, such as scanning electron microscopy (SEM), Fourier transform infra-red (FT-IR) spectroscopy, and x-rays diffraction (XRD) analysis. The fabricated BSA@ZnO NFs appeared flower like with multiple cone-shaped wings and average hydration size of 220.8 ± 12.6 nm. Further, BSA@ZnO NFs showed enhanced cellular uptake and cytocidal effects against skin cancer cells by inhibiting their growth via oxidative stress compared uncoated ZnO NFs. Moreover, BSA@ZnO NFs showed enhance biosafety, blood circulation time, tumor accumulation and in vivo tumor growth inhibition compared to ZnO NFs. In short, our findings suggesting BSA@ZnO NFs as a promising candidate for various types of cancer treatment along with chemotherapy.


Asunto(s)
Melanoma , Nanopartículas del Metal , Neoplasias Cutáneas , Óxido de Zinc , Animales , Humanos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Espectroscopía Infrarroja por Transformada de Fourier , Melanoma/tratamiento farmacológico , Albúmina Sérica Bovina/química , Neoplasias Cutáneas/tratamiento farmacológico , Estrés Oxidativo , Antibacterianos/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/química
12.
Bioorg Chem ; 145: 107228, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422592

RESUMEN

In this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC50 1.13 µM. Structure-activity relationship (SAR) analysis revealed that N-substituted derivatives generally enhanced the cytotoxic effect, particularly with aliphatic side chains that facilitated favorable target interactions. We also investigated apoptosis, DNA fragmentation, invasion assay, and anti-migration effects, and discussed their underlying molecular mechanisms for the most active compound 7c. We demonstrated that 7c N-propyl analogue could inhibit MDA-MB-231 TNBC cell proliferation by inducing apoptosis through the regulation of vital proteins, namely c-Src, p53, and Bax. In addition, our results also revealed the potential of these compounds against tumor metastasis by downregulating the invasion and migration modes. Moreover, the in vitro inhibitory effect of active analogs against c-Src kinase was studied and proved that might be the main cause of their antiproliferative effect. Overall, these compelling results point towards the therapeutic potential of these derivatives, particularly those with N-substitution as promising candidates for the treatment of TNBC type of breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Proteína Tirosina Quinasa CSK/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Familia-src Quinasas , Relación Estructura-Actividad , Pirimidinas/química , Pirimidinas/farmacología , Pirazoles/química , Pirazoles/farmacología
13.
Curr Mol Pharmacol ; 17: e18761429269383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389415

RESUMEN

BACKGROUND: Lung cancer (LC) incidence is rising globally and is reflected as a leading cause of cancer-associated deaths. Lung cancer leads to multistage carcinogenesis with gradually increasing genetic and epigenetic changes. AIMS: Sanguinarine (sang) mediated the anticancer effect in LCC lines by involving the stimulation of reactive oxygen species (ROS), impeding Bcl2, and enhancing Bax and other apoptosis-associated protein Caspase-3, -9, and -PARP, subsequently inhibiting the LC invasion and migration. OBJECTIVE: This study was conducted to investigate the apoptotic rate and mechanism of Sang in human LC cells (LCC) H522 and H1299. METHODS: MTT assay to determine the IC50, cell morphology, and colony formation assay were carried out to show the sanguinarine effect on the LC cell line. Moreover, scratch assay and transwell assay were performed to check the migration. Western blotting and qPCR were done to show its effects on targeted proteins and genes. ELISA was performed to show the VEGF effect after Sanguinarine treatment. Immunofluorescence was done to check the interlocution of the targeted protein. RESULTS: Sang significantly inhibited the growth of LCC lines in both time- and dose-dependent fashions. Flow cytometry examination and Annexin-V labeling determined that Sang increased the apoptotic cell percentage. H522 and H1299 LCC lines treated with Sang showed distinctive characteristics of apoptosis, including morphological changes and DNA fragmentation. CONCLUSION: Sang exhibited anticancer potential in LCC lines and could induce apoptosis and impede the invasion and migration of LCC, emerging as a promising anticancer natural agent in lung cancer management.


Asunto(s)
Antineoplásicos , Isoquinolinas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis , Benzofenantridinas/farmacología , Benzofenantridinas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Estrés Oxidativo
14.
J Adv Res ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38320729

RESUMEN

BACKGROUND: The emergence of carbon dots (CDs) as anticancer agents had sparked a transformation in cancer research and treatment strategies. These fluorescent CDs, initially introduced in the early 2000 s, possess exceptional biocompatibility, tunable fluorescence, and surface modification capabilities, positioning them as promising tools in biomedical applications. AIM OF REVIEW: The review encapsulates the transformative trajectory of green CDs as future anticancer nanomedicine, poised to redefine the strategies employed in the ongoing fight against cancer. KEY SCIENTIFIC CONCEPTS OF REVIEW: The versatility of CDs was rooted in their various synthesis approaches and sustainable strategies, enabling their adaptability for diverse therapeutic uses. In vitro studies had showcased CDs' selective cytotoxicity against cancer cells while sparing healthy counterparts, forming the basis for targeted therapeutic potential. This selectivity had been attributed to the reactive oxygen species (ROS) generation, which opened avenues for targeted interventions. The role of CDs in combination therapies, synergizing with chemotherapy, radiotherapy, and targeted approaches was then investigated to heighten their anticancer efficacy. Notably, in vivo studies highlight CDs' remarkable biocompatibility and minimal side effects, endorsing their translational promise. Integration with conventional cancer treatments such as chemotherapy, radiotherapy, and immunotherapy amplified the versatility and effectiveness of CDs. The exploration of CDs' applications in photo-induced treatments further solidified their significance, positioning them as photosensitizers (PS) in photodynamic therapy (PDT) and photothermal agents (PA) in photothermal therapy (PTT). In PDT, CDs triggered the generation of ROS upon light exposure, facilitating cancer cell elimination, while in PTT, they induced localized hyperthermia within cancer cells, enhancing therapeutic outcomes. In vitro and in vivo investigations validated CDs' efficacy in PDT and PTT, affirming their potential for integration into combination therapies. Looking ahead, the future of CDs in anticancer treatment encompasses bioavailability, biocompatibility, synergistic treatments, tumor targeting, artificial intelligence (AI) and robotics integration, personalized medicine, and clinical translation. This transformative odyssey of CDs as future anticancer agents is poised to redefine the paradigm of cancer treatment strategies.

15.
Colloids Surf B Biointerfaces ; 234: 113762, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244483

RESUMEN

Gastric ulcers are worrying, and their worsening conditions may result in bleeding in the internal lining of the stomach. The problem is annoying, and both patients and professionals are still not satisfied with the available treatment options. Hesperidin, a flavonoid molecule with potent anti-inflammatory and antioxidant effects, can work like witchcraft to repair gastric ulcers and preserve the stomach lining. Here, we employed a strategy that involved covering the surface of the nano-lipid carriers (NLCs) with sericin before encasing the hesperidin within (Se-He-NLC). Sericin, a biodegradable polymer increases the muco-adhesion with stomach lining and deployment of hesperidin in controlled manner. Se-He-NLCs were physico-chemically characterized for drug loading, encapsulation, particle size, morphology, drug release, chemical stability, and chemical bonding. The nanocarriers showed first order drug release in a controlled manner. Se-He-NLCs showed better in vitro permeation and ex vivo mucoadhesion, thereby by promoting the in vivo bioavailability. Se-He-NLCs also promoted the reduced glutathione (GSH) and glutathione-S-transferase (GST) levels by 2.24- and 1.61-folds, respectively in the stomach lining, and also the regulation of superoxide dismutase (SOD) and catalase (CAT) activities parallel to the control group. In addition, tissues lipid hydroperoxides (LOOH) and myeloperoxidase (MPO) activity were reduced significantly with Se-He-NLCs administration. Se-He-NLC therapy of stomach ulcers in vivo demonstrated better binding ratio and ulcer healing potential. This approach reveals huge capacity for delivering therapies to treat gastric ulcers based on the clinical significance of sericin coated hesperidin nanocarriers in gastric ulcer treatment.


Asunto(s)
Hesperidina , Nanopartículas , Sericinas , Úlcera Gástrica , Humanos , Ratas , Animales , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/metabolismo , Hesperidina/farmacología , Ratas Wistar , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo
16.
PLoS One ; 19(1): e0296010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38266021

RESUMEN

The present study explores the epidermal growth factor receptor (EGFR) tyrosine kinase inhibition efficacy of secondary metabolites in Trichoderma spp. through molecular docking, molecular dynamics (MD) simulation and MM-PBSA approach. The result of molecular docking confirmed that out of 200 metabolites screened, three metabolites such as Harzianelactone A, Pretrichodermamide G and Aspochalasin M, potentially bound with the active binding site of EGFR tyrosine kinase domain(PDB ID: 1M17) with a threshold docking score of ≤- 9.0 kcal/mol when compared with the standard EGFR inhibitor (Erlotinib). The MD simulation was run to investigate the potential for stable complex formation in EGFR tyrosine kinase domain-unbound/lead metabolite (Aspochalasin M)-bound/standard inhibitor (Erlotinib)-bound complex. The MD simulation analysis at 100 ns revealed that Aspochalasin M formed the stable complex with EGFR. Besides, the in silico predication of pharmacokinetic properties further confirmed that Aspochalasin M qualified the drug-likeness rules with no harmful side effects (viz., hERG toxicity, hepatotoxicity and skin sensitization), non-mutagenicity and favourable logBB value. Moreover, the BOILED-Egg model predicted that Aspochalasin M showed a higher gastrointestinal absorption with improved bioavailability when administered orally and removed from the central nervous system (CNS). The results of the computational studies concluded that Aspochalasin M possessed significant efficacy in binding EGFR's active sites compared to the known standard inhibitor (Erlotinib). Therefore, Aspochalasin M can be used as a possible anticancer drug candidate and further in vitro and in vivo experimental validation of Aspochalasin M of Trichoderma spp. are required to determine its anticancer potential.


Asunto(s)
Trichoderma , Clorhidrato de Erlotinib , Simulación del Acoplamiento Molecular , Receptores ErbB
17.
Curr Protein Pept Sci ; 25(3): 244-255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37909437

RESUMEN

Eph receptors and their Eph receptor-interacting (ephrin) ligands comprise a vital cell communication system with several functions. In cancer cells, there was evidence of bilateral Eph receptor signaling with both tumor-suppressing and tumor-promoting actions. As a member of the Eph receptor family, EphB4 has been linked to tumor angiogenesis, growth, and metastasis, which makes it a viable and desirable target for drug development in therapeutic applications. Many investigations have been conducted over the last decade to elucidate the structure and function of EphB4 in association with its ligand ephrinB2 for its involvement in tumorigenesis. Although several EphB4-targeting drugs have been investigated, and some selective inhibitors have been evaluated in clinical trials. This article addresses the structure and function of the EphB4 receptor, analyses its possibility as an anticancer therapeutic target, and summarises knowledge of EphB4 kinase inhibitors. To summarise, EphB4 is a difficult but potential treatment option for cancers.


Asunto(s)
Neoplasias , Receptor EphA1 , Humanos , Efrina-B2/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Receptores de la Familia Eph , Receptor EphB4/genética , Receptor EphB4/metabolismo
18.
Int J Biol Macromol ; 258(Pt 1): 128839, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134998

RESUMEN

In this study, we aim to unveil the potential of itaconyl chondroitin sulfate nanogel (ICSNG) in tackling chronic kidney diseases triggered by the administration of CDDP and doxorubicin (Adriamycin, ADR). To that end, the new drug delivery system (ICSNG) was initially prepared, characterized, and loaded with the target drugs. Thereafter, the in-vivo studies were performed using five equally divided groups of 100 male Sprague-Dawley (SD) rats. Biochemical evaluation and immunohistochemistry studies have revealed the renal toxicity and the ameliorative effects of ICSNG on renal function. When ICSNG-based treatments were contrasted with the CDDP and ADR infected groups, they significantly increased paraoxonase-1 (PON-1), superoxide dismutase (SOD), catalase (CAT) and albumin activity and significantly decreased nitric oxide (NO), tumor necrosis factor alpha (TNF-α), creatinine, urea, and cyclooxygenase-2 (COX-2) activity (p < 0.001). The findings of the current study imply that ICSNG may be able to lessen renal inflammation and damage in chronic kidney disorders brought on by the administration of CDDP and ADR. Interestingly, according to the estimated selectivity indices, the ICSNG-encapsulated drugs have demonstrated superior selectivity for cancer MCF-7 cells, over healthy HSF cells, in comparison to the bare drugs.


Asunto(s)
Cisplatino , Riñón , Polietilenglicoles , Polietileneimina , Ratas , Masculino , Animales , Cisplatino/farmacología , Sulfatos de Condroitina/farmacología , Nanogeles , Ratas Sprague-Dawley , Antioxidantes/farmacología , Doxorrubicina/farmacología , Estrés Oxidativo , Creatinina/metabolismo
19.
Saudi Pharm J ; 31(12): 101839, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37965489

RESUMEN

Itraconazole (ITZ) is a renowned antifungal medication, however its therapeutic efficacy is limited by low solubility and oral bioavailability. The current research work attempted to augment the oral bioavailability of ITZ by incorporating into self-emulsifying micelles (SEMCs). To fabricate the SEMCs, various preparation techniques including physical mixture, melt-emulsification, solvent evaporation and kneading, were opted by using different weight ratio of drug and solubilizers i.e. Gelucire-50/13 or Gelucire-44/14 and characterized both in vitro and in vivo. The prepared SEMCs were found to be in the size range from 63.4 ± 5.2 to 284.2 ± 19.5 nm with surface charges ranging from -16 ± 1.2 to -27 ± 2.0 mV. The drug solubility was improved to a reasonable extent with all investigated formulations, however, SEMCs in group 6 prepared by kneading method (KMG6) using Gelucire-44/14: drug (10:1 presented 87.6 folds' increase (964.93 ± 2 µg/mL) compared to solubility of crystalline ITZ (11 ± 2 µg/mL) through kneading method. In addition, KMG6 SEMCs shows the fast drug release compared to other SEMCs. Further, KMG6 SEMCs also exhibited 5.12-fold higher relative intestinal serosal fluid absorption compared to crystalline ITZ. The pharmacokinetic parameters such Cmax, AUC and Tmax of KMG6 SEMCs significantly improved compared to crystalline ITZ. In conclusion, the manipulation of ITZ solubility, dissolution rate and absorption using SEMCs is a promising strategy for bioavailability enhancement.

20.
Biomed Pharmacother ; 168: 115757, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897972

RESUMEN

Costunolide (COST) is a sesquiterpene lactone that belongs to the germacranolide group, and occurs mainly in Saussurea lappa Clarke. Although COST inhibits the proliferation and metastasis of cancer cells and induces their apoptosis, it suffers poor water solubility and cellular permeability. Therefore, this study aimed to enhance the anti-proliferative activity of COST in LS174T colon cancer cells through its inclusion in bilosomal nanoformulation (COST-BILs). The optimized BIL formula contained cholesterol and Span-85 in a molar ratio of 1:5 as well as bile salt at a molar concentration of 0.5 mM, with entrapment efficiency of 63.4 ± 3.59 % and particle size of 119.7 ± 3.63 nm. The optimized COST-BILs showed a potent cytotoxic effect against LS174T cells with an IC50 of 6.20 µM; meanwhile, raw COST had an IC50 of 15.78 µM. Safety and relative selectivity were confirmed in the normal human colonic epithelial cells (HCoEpC). Cell cycle analysis indicated that both raw COST and COST-BILs significantly increased the fraction of LS174T cells in the sub-G1 phase. This was accompanied by a significant enhancement of early, late, and total apoptosis, as indicated by annexin-V staining. In addition, COST-BILs exhibited more potent activity in up-regulating CASP3, TP53, and BAX, and in down-regulating the expression of BCL2 mRNA as compared to raw COST. Further, the prepared formula enhanced the release of cytochrome C as well as the generation of reactive oxygen species (ROS) and reduced the integrity of mitochondrial membranes. In conclusion, the loading of COST on BILs significantly enhances its pro-apoptotic activity in LS174T cells.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Nanopartículas , Sesquiterpenos , Humanos , Antineoplásicos/farmacología , Sesquiterpenos/farmacología , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA