Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38916623

RESUMEN

Benign hereditary chorea (BHC) is an inherited neurological disorder consisting of childhood-onset, nonprogressive chorea, generally without any other manifestations. In most reported cases, the inheritance of BHC is autosomal dominant but both incomplete penetrance and variable expressivity are observed and can be caused by NKX2-1 mutations. The spectrum contains choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress syndrome. The neurological symptoms can be misdiagnosed as Huntington's disease (HD). The two Polish families were diagnosed with NKX2-1 gene mutations and a literature review concerning the NKX2-1-related disorders was conducted. All family members were examined by experienced movement disorders specialists. PubMed database was searched to obtain previously described NKX2-1 cases. Whole exome sequencing (WES) was performed in one proband (Family A) and direct NKX2-1 sequencing in the second (Family B). Two Polish families were diagnosed with NKX2-1 gene mutations (p.Trp208Leu and p.Cys117Alafs*8). In one family, the co-occurrence of HD was reported. Forty-nine publications were included in the literature review and symptoms of 195 patients with confirmed NKX2-1 mutation were analyzed. The most common symptoms were chorea and choreiform movements, and delayed motor milestones. The NKX2-1 mutation should always be considered as a potential diagnosis in families with chorea, even with a family history of HD. Lack of chorea does not exclude the NKX2-1-related disorders.

2.
Neurogenetics ; 25(3): 233-247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38758368

RESUMEN

Neuromuscular disorders (NMDs) include a wide range of diseases affecting the peripheral nervous system. The genetic diagnoses are increasingly obtained with using the next generation sequencing (NGS). We applied the custom-design targeted NGS panel including 89 genes, together with genotyping and multiplex ligation-dependent probe amplification (MLPA) to identify a genetic spectrum of NMDs in 52 Polish patients. As a result, the genetic diagnosis was determined by NGS panel in 29 patients so its diagnostic utility is estimated at 55.8%. The most pathogenic variants were found in CLCN1, followed by CAPN3, SCN4A, and SGCA genes. Genotyping of myotonic dystrophy type 1 and 2 (DM1 and DM2) as a secondary approach has been performed. The co-occurrence of CAPN3 and CNBP mutations in one patient as well as DYSF and CNBP mutations in another suggests possibly more complex inheritance as well as expression of a phenotype. In 7 individuals with single nucleotide variant found in NGS testing, the MLPA of the CAPN3 gene was performed detecting the deletion encompassing exons 2-8 in the CAPN3 gene in one patient, confirming recessive limb-girdle muscular dystrophy type 1 (LGMDR1). Thirty patients obtained a genetic diagnosis (57.7%) after using NGS testing, genotyping and MLPA analysis. The study allowed for the identification of 27 known and 4 novel pathogenic/likely pathogenic variants and variants of uncertain significance (VUS) associated with NMDs.In conclusion, the diagnostic approach with diverse molecular techniques enables to broaden the mutational spectrum and maximizes the diagnostic yield. Furthermore, the co-occurrence of DM2 and LGMD has been detected in 2 individuals.


Asunto(s)
Calpaína , Canales de Cloruro , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Musculares , Enfermedades Neuromusculares , Fenotipo , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/diagnóstico , Femenino , Pruebas Genéticas/métodos , Adulto , Persona de Mediana Edad , Calpaína/genética , Canales de Cloruro/genética , Proteínas Musculares/genética , Adolescente , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto Joven , Niño , Genotipo , Anciano , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Miotónica/genética , Distrofia Miotónica/diagnóstico , Preescolar
3.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732227

RESUMEN

The most common form of hereditary spastic paraplegia (HSP), SPG4 is caused by single nucleotide variants and microrearrangements in the SPAST gene. The high percentage of multi-exonic deletions or duplications observed in SPG4 patients is predisposed by the presence of a high frequency of Alu sequences in the gene sequence. In the present study, we analyzed DNA and RNA samples collected from patients with different microrearrangements in SPAST to map gene breakpoints and evaluate the mutation mechanism. The study group consisted of 69 individuals, including 50 SPG4 patients and 19 healthy relatives from 18 families. Affected family members from 17 families carried varying ranges of microrearrangements in the SPAST gene, while one individual had a single nucleotide variant in the 5'UTR of SPAST. To detect the breakpoints of the SPAST gene, long-range PCR followed by sequencing was performed. The breakpoint sequence was detected for five different intragenic SPAST deletions and one duplication, revealing Alu-mediated microhomology at breakpoint junctions resulting from non-allelic homologous recombination in these patients. Furthermore, SPAST gene expression analysis was performed using patient RNA samples extracted from whole blood. Quantitative real-time PCR tests performed in 14 patients suggest no expression of transcripts with microrearrangements in 5 of them. The obtained data indicate that nonsense-mediated decay degradation is not the only mechanism of hereditary spastic paraplegia in patients with SPAST microrearrangements.


Asunto(s)
Haploinsuficiencia , Paraplejía Espástica Hereditaria , Espastina , Humanos , Espastina/genética , Paraplejía Espástica Hereditaria/genética , Masculino , Femenino , Haploinsuficiencia/genética , Linaje , Variaciones en el Número de Copia de ADN , Adulto , Elementos Alu/genética , Persona de Mediana Edad , Adolescente , Adulto Joven , Degradación de ARNm Mediada por Codón sin Sentido
4.
Neurol Neurochir Pol ; 56(5): 399-403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35792560

RESUMEN

INTRODUCTION: In myotonia congenita (MC), activation with exercise or cooling can induce transient changes in compound motor action potential (CMAP) parameters, thus providing a guide to genetic analysis. MATERIAL AND METHODS: We performed the short exercise test (SET) and the short exercise test with cooling (SETC) in 30 patients with genetically confirmed Becker disease (BMC) to estimate their utility in the diagnosis of BMC. RESULTS: Although we observed a significant decrease in CMAP amplitude immediately after maximal voluntary effort in both tests in the whole BMC group, in men this decline was significantly smaller than in women, especially in SET. Clinical implications/future directions: In men with a clinical suspicion of BMC, a small decrease in CMAP amplitude in SET together with a typical decline in SETC does not exclude the diagnosis of BMC. Our results show a sex-specific difference in chloride channel function in BMC, which needs further investigation.


Asunto(s)
Miotonía Congénita , Femenino , Humanos , Masculino , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Caracteres Sexuales , Electromiografía , Potenciales de Acción/fisiología , Mutación
5.
Neurol Neurochir Pol ; 56(3): 276-280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35661131

RESUMEN

INTRODUCTION: The expansion of a hexanucleotide GGGGCC repeat (G4C2) in the C9orf72 locus is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In addition, C9orf72 expansion has also been detected in patients with a clinical manifestation of Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), and ataxic disorders. MATERIAL AND METHODS: A total of 1,387 patients with clinically suspected ALS, HD or spinal and bulbar muscular atrophy (SBMA) were enrolled, and the prevalence of C9orf72 expansions was estimated. RESULTS: The hexanucleotide expansion accounted for 3.7% of the ALS patients, 0.2% of the HD suspected patients with excluded HTT mutation, and 1.3% of the suspected SBMA patients with excluded mutation in AR gene. CONCLUSIONS: This is the first report revealing the presence of C9orf72 expansion in patients with a suspected SBMA diagnosis. Consequently, we advise testing for C9orf72 expansion in patients presenting with the SBMA phenotype and a genetically unsolved diagnosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Bulboespinal Ligada al X , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Atrofia Bulboespinal Ligada al X/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Humanos , Proteínas/genética
6.
J Appl Genet ; 63(3): 513-525, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35588347

RESUMEN

Hereditary ataxias (HA) are a rare group of heterogeneous disorders. Here, we present the results of molecular testing of a group of ataxia patients using a custom-designed next-generation sequencing (NGS) panel. Due to the genetic and clinical overlapping of hereditary ataxias and spastic paraplegias (HSP), the panel encompasses together HA and HSP genes. The NGS libraries, comprising coding sequences for 152 genes, were performed using KAPA HyperPlus and HyperCap Target Enrichment Kit, sequenced on the MiSeq instrument. The results were analyzed using the BaseSpace Variant Interpreter and Integrative Genomics Viewer. All pathogenic and likely pathogenic variants were confirmed using Sanger sequencing. A total of 29 patients with hereditary ataxias were enrolled in the NGS testing, and 16 patients had a confirmed molecular diagnosis with diagnostic accuracy rate of 55.2%. Pathogenic or likely pathogenic mutations were identified in 10 different genes: POLG (PEOA1, n = 3; SCAE, n = 2), CACNA1A (EA2, n = 2), SACS (ARSACS, n = 2), SLC33A1 (SPG42, n = 2), STUB1 (SCA48, n = 1), SPTBN2 (SCA5, n = 1), TGM6 (SCA35, n = 1), SETX (AOA2, n = 1), ANO10 (SCAR10, n = 1), and SPAST (SPG4, n = 1). We demonstrated that an approach based on the targeted use of the NGS panel can be highly effective and a useful tool in the molecular diagnosis of ataxia patients. Furthermore, we highlight the fact that a sequencing panel targeting both ataxias and HSP genes increases the diagnostic success level.


Asunto(s)
Paraplejía Espástica Hereditaria , Degeneraciones Espinocerebelosas , Ataxia/diagnóstico , Ataxia/genética , ADN Helicasas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Técnicas de Diagnóstico Molecular , Enzimas Multifuncionales/genética , Espasticidad Muscular , Mutación , ARN Helicasas/genética , Paraplejía Espástica Hereditaria/genética , Espastina/genética , Ataxias Espinocerebelosas/congénito , Ubiquitina-Proteína Ligasas/genética
7.
J Electromyogr Kinesiol ; 49: 102362, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31610484

RESUMEN

INTRODUCTION: Myotonia congenita (MC) is caused by pathogenic variants in the CLCN1 gene coding the chloride channel protein. METHODS: To test the hypothesis that needle EMG could be helpful in distinguishing between the recessive and dominant MC, we performed EMG examination in 36 patients (23 men) aged 4-61 years with genetically proven MC: in 30 patients with autosomal recessive MC (Becker MC) and in 6 with autosomal dominant MC (Thomsen MC). RESULTS: Myotonic discharges were recorded in 95.8% of examined muscles. For the whole MC group we observed a significant positive correlation between parameters of motor unit activity potentials (MUAPs) in vastus lateralis and tibialis anterior muscles and the duration of the disease. Similar correlation for biceps brachii also was found in Becker MC subgroup only. DISCUSSION: EMG could still be helpful in diagnosis of MC and together with provocative tests might be useful in differentiation between recessive and autosomal MC.


Asunto(s)
Electromiografía/métodos , Potenciales Evocados Motores , Mutación , Miotonía Congénita/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Diagnóstico Diferencial , Femenino , Genes Dominantes , Genes Recesivos , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética
8.
Neurogenetics ; 20(1): 27-38, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30778698

RESUMEN

Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous neurodegenerative disorders. Numerous genes linked to HSPs, overlapping phenotypes between HSP subtypes and other neurodegenerative disorders and the HSPs' dual mode of inheritance (both dominant and recessive) make the genetic diagnosis of HSPs complex and difficult. Out of the original HSP cohort comprising 306 index cases (familial and isolated) who had been tested according to "traditional workflow/guidelines" by Multiplex Ligation-dependent Probe Amplification (MLPA) and Sanger sequencing, 30 unrelated patients (all familial cases) with unsolved genetic diagnoses were tested using next-generation sequencing (NGS). One hundred thirty-two genes associated with spastic paraplegias, hereditary ataxias and related movement disorders were analysed using the Illumina TruSight™ One Sequencing Panel. The targeted NGS data showed pathogenic variants, likely pathogenic variants and those of uncertain significance (VUS) in the following genes: SPAST (spastin, SPG4), ATL1 (atlastin 1, SPG3), WASHC5 (SPG8), KIF5A (SPG10), KIF1A (SPG30), SPG11 (spatacsin), CYP27A1, SETX and ITPR1. Out of the nine genes mentioned above, three have not been directly associated with the HSP phenotype to date. Considering the phenotypic overlap and joint cellular pathways of the HSP, spinocerebellar ataxia (SCA) and amyotrophic lateral sclerosis (ALS) genes, our findings provide further evidence that common genetic testing may improve the diagnostics of movement disorders with a spectrum of ataxia-spasticity signs.


Asunto(s)
Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Paraplejía Espástica Hereditaria/genética , Pueblo Asiatico/genética , Femenino , Pruebas Genéticas , Humanos , Masculino , Proteínas de la Membrana/genética , Mutación/genética
9.
Hum Mutat ; 37(7): 703-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27071356

RESUMEN

Biallelic loss-of-function mutations in SPG11 cause a wide spectrum of recessively inherited, neurodegenerative disorders including hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease. By comprehensive screening of three large cohorts of HSP index patients, we identified 83 alleles with "small" mutations and 13 alleles that carry large genomic rearrangements. Including relevant data from previous studies, we estimate that copy number variants (CNVs) account for ∼19% of pathogenic SPG11 alleles. The breakpoints for all novel and some previously reported CNVs were determined by long-range PCR and sequencing. This revealed several Alu-associated recombination hotspots. We also found evidence for additional mutational mechanisms, including for a two-step event in which an Alu retrotransposition preceded the actual rearrangement. Apparently independent samples with identical breakpoints were analyzed by microsatellite PCRs. The resulting haplotypes suggested the existence of two rearrangement founder alleles. Our findings widen the spectra of mutations and mutational mechanisms in SPG11, underscore the pivotal role played by Alus, and are of high diagnostic relevance for a wide spectrum of clinical phenotypes including the most frequent form of recessive HSP.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas/genética , Paraplejía Espástica Hereditaria/genética , Alelos , Elementos Alu , Puntos de Rotura del Cromosoma , Cromosomas Humanos/genética , Efecto Fundador , Humanos , Mutación , Análisis de Secuencia de ADN
10.
J Neurol Sci ; 359(1-2): 35-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26671083

RESUMEN

Hereditary spastic paraplegias (HSPs) consist of a heterogeneous group of genetically determined neurodegenerative disorders. Progressive lower extremity weakness and spasticity are the prominent features of HSPs resulting from retrograde axonal degeneration of the corticospinal tracts. Three genetic types, SPG3 (ATL1), SPG4 (SPAST) and SPG31 (REEP1), appear predominantly and may account for up to 50% of autosomal dominant hereditary spastic paraplegias (AD-HSPs). Here, we present the results of genetic testing of the three mentioned SPG genetic types in a group of 216 unrelated Polish patients affected with spastic paraplegia. Molecular evaluation was performed by multiplex ligation-dependent probe amplification (MLPA) and DNA sequencing. Nineteen novel mutations: 13 in SPAST, 4 in ATL1 and 2 in REEP1, were identified among overall 50 different mutations detected in 57 families. Genetic analysis resulted in the identification of molecular defects in 54% of familial and 8.4% of isolated cases. Our research expanded the causative mutations spectrum of the three most common genetic forms of HSPs found in a large cohort of probands originating from the Central Europe.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Unión al GTP/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Mutación/genética , Paraplejía Espástica Hereditaria/genética , Adulto , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Polonia , Espastina , Adulto Joven
11.
Anal Biochem ; 474: 35-7, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25615417

RESUMEN

Following locus-specific genome editing of mouse embryonic stem cells (ESCs), the identification of correctly targeted clones remains a challenge. We applied multiplex ligation-dependent probe amplification (MLPA) to screen for homologous recombination-based genomic integration of a knockout construct in which part of a gene is deleted. All candidate ESCs thereby identified were subsequently validated by conventional methods. Thus, MLPA represents a highly reliable as well as cost- and time-efficient alternative to currently applied methods such as Southern blotting and polymerase chain reaction (PCR)-based approaches. It is also applicable to knockin recombination strategies and compatible with the CRISPR/Cas9 system and other genome editing strategies.


Asunto(s)
Células Madre Embrionarias/citología , Reacción en Cadena de la Polimerasa Multiplex/métodos , Animales , Células Clonales , Electroporación , Células Madre Embrionarias/metabolismo , Recombinación Homóloga/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones Noqueados
12.
J Pathol ; 234(4): 436-40, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25143307

RESUMEN

We recently reported SMARCE1 mutations as a cause of spinal clear cell meningiomas. Here, we have identified five further cases with non-NF2 spinal meningiomas and six with non-NF2 cranial meningiomas. Three of the spinal cases and three of the cranial cases were clear cell tumours. We screened them for SMARCE1 mutations and investigated copy number changes in all point mutation-negative samples. We identified two novel mutations in individuals with spinal clear cell meningiomas and three mutations in individuals with cranial clear cell meningiomas. Copy number analysis identified a large deletion of the 5' end of SMARCE1 in two unrelated probands with spinal clear cell meningiomas. Testing of affected and unaffected relatives of one of these individuals identified the same deletion in two affected female siblings and their unaffected father, providing further evidence of incomplete penetrance of meningioma disease in males. In addition, we found loss of SMARCE1 protein in three of 10 paraffin-embedded cranial clear cell meningiomas. Together, these results demonstrate that loss of SMARCE1 is relevant to cranial as well as spinal meningiomas. Our study broadens the spectrum of mutations in the SMARCE1 gene and expands the phenotype to include cranial clear cell meningiomas.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Mutación de Línea Germinal , Neoplasias Meníngeas/genética , Meningioma/genética , Adolescente , Adulto , Neoplasias Encefálicas/genética , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Dosificación de Gen , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Masculino , Linaje , Neoplasias de la Columna Vertebral/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA