RESUMEN
BACKGROUND: Bilirubin has antioxidant properties, and elevated levels within the normal range have been associated with improved lung function and decreased risk of asthma in adults, but studies of young children are scarce. Here, we investigate associations between bilirubin in early life and respiratory health endpoints during preschool age in two independent birth cohorts. METHODS: Bilirubin metabolites were assessed at ages 0.5, 1.5, and 6 years in COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) and ages 1, 3, and 6 years in the VDAART (The Vitamin D Antenatal Asthma Reduction Trial) cohort. Meta-analyses were done to summarize the relationship between levels of bilirubin metabolites and asthma, infections, lung function, and allergic sensitization until age 6 across the cohorts. Interaction with the glucuronosyltransferase family 1 member A1 (UGT1A) genotype encoding for an enzyme in the bilirubin metabolism was explored, and metabolomics data were integrated to study underlying mechanisms. FINDINGS: Increasing bilirubin (Z,Z) at ages 1.5-3 years was associated with an increased risk of allergic sensitization (adjusted relative risk [aRR] = 1.85 [1.20-2.85], p = 0.005), and age 6 bilirubin (Z,Z) also showed a trend of association with allergic sensitization at age 6 (aRR = 1.31 [0.97-1.77], p = 0.08), which showed significant interaction for the age 6 bilirubin (Z,Z)xUGT1A genotype. Further, increasing bilirubin (E,E), bilirubin (Z,Z), and biliverdin at ages 1.5-3 years was associated with a lower forced expiratory volume at age 6 (aRR range = 0.81-0.91, p < 0.049) but without a significant interaction with the UGT1A genotype (p interactions > 0.05). Network analysis showed a significant correlation between bilirubin metabolism and acyl carnitines. There were no associations between bilirubin metabolites and the risk of asthma and infections. CONCLUSIONS: Bilirubin metabolism in early life may play a role in childhood respiratory health, particularly in children with specific UGT1A genotypes. FUNDING: The Lundbeck Foundation (Grant no R16-A1694), The Ministry of Health (Grant no 903516), Danish Council for Strategic Research (Grant no 0603-00280B), and The Capital Region Research Foundation have provided core support to the COPSAC research center. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 946228). The Vitamin D Antenatal Asthma Reduction Trial (VDDART, ClinicalTrials.gov identifier: NCT00920621) was supported by grant U01HL091528 from NHLBI, U54TR001012 from the National Centers for Advancing Translational Sciences (NCATS). Metabolomics work by VDAART was supported by the National Heart, Lung, and Blood Institute (NHLBI) grant R01HL123915 and R01HL141826. S.T.W. was supported by R01HL091528 from the NHLBI, UG3OD023268 from Office of The Director, National Institute of Health, and P01HL132825 from the NHLBI.
RESUMEN
CONTEXT: Polycystic ovary syndrome (PCOS) has historically been conceptualized as a disorder of the reproductive system in women. However, offspring of women with PCOS begin to show metabolic features of PCOS in childhood, suggestive of childhood manifestations. OBJECTIVE: To identify childhood manifestations of genetic risk for PCOS. METHODS: We calculated a PCOS polygenic risk score (PRS) for 12 350 girls and boys in 4 pediatric cohorts-ALSPAC (UK), COPSAC (Denmark), Project Viva (USA), and The HOLBÆK Study (Denmark). We tested for association of the PRS with PCOS-related phenotypes throughout childhood and with age at pubarche and age at peak height velocity and meta-analyzed effects across cohorts using fixed-effect models. RESULTS: Higher PRS for PCOS was associated with higher body mass index in midchildhood (0.05 kg/m2 increase per 1 SD of PRS, 95% CI 0.03, 0.07, P = 3 × 10-5) and higher risk of obesity in early childhood (OR 1.34, 95% CI 1.13, 1.59, P = .0009); both persisted through late adolescence (P all ≤.03). Higher PCOS PRS was associated with earlier age at pubarche (0.85-month decrease per 1 SD of PRS, 95% CI -1.44, -0.26, P = .005) and younger age at peak height velocity (0.64-month decrease per 1 SD of PRS, 95% CI -0.94, -0.33, P = 4 × 10-5). CONCLUSION: Genetic risk factors for PCOS are associated with alterations in metabolic, growth, and developmental traits in childhood. Thus, PCOS may not simply be a condition that affects women of reproductive age but, rather, a possible manifestation of an underlying condition that affects both sexes starting in early life.
Asunto(s)
Síndrome del Ovario Poliquístico , Preescolar , Masculino , Adolescente , Humanos , Femenino , Niño , Síndrome del Ovario Poliquístico/epidemiología , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/complicaciones , Factores de Riesgo , Obesidad/complicaciones , Índice de Masa Corporal , Predisposición Genética a la Enfermedad , Puntuación de Riesgo GenéticoRESUMEN
BACKGROUND: We recently conducted a double-blinded randomised controlled trial showing that fish-oil supplementation during pregnancy reduced the risk of persistent wheeze or asthma in the child by 30%. Here, we explore the mechanisms of the intervention. METHODS: 736 pregnant women were given either placebo or n-3 long-chain polyunsaturated fatty acids (LCPUFAs) in the third trimester in a randomised controlled trial. Deep clinical follow-up of the 695 children in the trial was done at 12 visits until age 6 years, including assessment of genotype at the fatty acid desaturase (FADS) locus, plasma fatty acids, airway DNA methylation, gene expression, microbiome and metabolomics. RESULTS: Supplementation with n-3 LCPUFA reduced the overall risk of non-atopic asthma by 73% at age 6 (relative risk (RR) 0.27 (95% CI 0.06 to 0.85), p=0.042). In contrast, there was no overall effect on asthma with atopic traits (RR 1.42 (95% CI 0.63 to 3.38), p=0.40), but this was significantly modified by maternal FADS genotype and LCPUFA blood levels (interaction p<0.05), and supplementation did reduce the risk of atopic asthma in the subgroup of mothers with FADS risk variants and/or low blood levels of n-3 LCPUFA before the intervention (RR 0.31 (95% CI 0.11 to 0.75), p=0.016). Furthermore, n-3 LCPUFA significantly reduced the number of infections (croup, gastroenteritis, tonsillitis, otitis media and pneumonia) by 16% (incidence rate ratio 0.84 (95% CI 0.74 to 0.96), p=0.009). CONCLUSIONS: n-3 LCPUFA supplementation in pregnancy showed protective effects on non-atopic asthma and infections. Protective effects on atopic asthma depended on maternal FADS genotype and n-3 LCPUFA levels. This indicates that the fatty acid pathway is involved in multiple mechanisms affecting the risk of asthma subtypes and infections. TRIAL REGISTRATION NUMBER: NCT00798226.
Asunto(s)
Asma , Ácidos Grasos Omega-3 , Niño , Femenino , Humanos , Embarazo , Aceites de Pescado/uso terapéutico , Suplementos Dietéticos , Asma/prevención & control , Ácidos GrasosRESUMEN
Childhood allergic diseases, including asthma, rhinitis and eczema, are prevalent conditions that share strong genetic and environmental components. Diagnosis relies on clinical history and measurements of allergen-specific IgE. We hypothesize that a multi-omics model could accurately diagnose childhood allergic disease. We show that nasal DNA methylation has the strongest predictive power to diagnose childhood allergy, surpassing blood DNA methylation, genetic risk scores, and environmental factors. DNA methylation at only three nasal CpG sites classifies allergic disease in Dutch children aged 16 years well, with an area under the curve (AUC) of 0.86. This is replicated in Puerto Rican children aged 9-20 years (AUC 0.82). DNA methylation at these CpGs additionally detects allergic multimorbidity and symptomatic IgE sensitization. Using nasal single-cell RNA-sequencing data, these three CpGs associate with influx of T cells and macrophages that contribute to allergic inflammation. Our study suggests the potential of methylation-based allergy diagnosis.
Asunto(s)
Asma , Hipersensibilidad , Niño , Humanos , Metilación de ADN/genética , Hipersensibilidad/diagnóstico , Hipersensibilidad/genética , Nariz , Asma/diagnóstico , Asma/genética , Inmunoglobulina ERESUMEN
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
Asunto(s)
Estatura , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Humanos , Estatura/genética , Frecuencia de los Genes/genética , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética , Europa (Continente)/etnología , Tamaño de la Muestra , FenotipoRESUMEN
BACKGROUND: Asthma with severe exacerbation is one of the most common causes of hospitalization among young children. Exacerbations are typically triggered by respiratory infections, but the host factors causing recurrent infections and exacerbations in some children are poorly understood. As a result, current treatment options and preventive measures are inadequate. OBJECTIVE: We sought to identify genetic interaction associated with the development of childhood asthma. METHODS: We performed an exhaustive search for pairwise interaction between genetic single nucleotide polymorphisms using 1204 cases of a specific phenotype of early childhood asthma with severe exacerbations in patients aged 2 to 6 years combined with 5328 nonasthmatic controls. Replication was attempted in 3 independent populations, and potential underlying immune mechanisms were investigated in the COPSAC2010 and COPSAC2000 birth cohorts. RESULTS: We found evidence of interaction, including replication in independent populations, between the known childhood asthma loci CDHR3 and GSDMB. The effect of CDHR3 was dependent on the GSDMB genotype, and this interaction was more pronounced for severe and early onset of disease. Blood immune analyses suggested a mechanism related to increased IL-17A production after viral stimulation. CONCLUSIONS: We found evidence of interaction between CDHR3 and GSDMB in development of early childhood asthma, possibly related to increased IL-17A response to viral infections. This study demonstrates the importance of focusing on specific disease subtypes for understanding the genetic mechanisms of asthma.
Asunto(s)
Asma , Estudio de Asociación del Genoma Completo , Asma/genética , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Predisposición Genética a la Enfermedad , Humanos , Interleucina-17/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple , Proteínas Citotóxicas Formadoras de PorosRESUMEN
BACKGROUND: Randomized controlled trials (RCTs) suggest a protective effect of high-dose vitamin D supplementation in pregnancy on offspring risk of persistent wheeze, but only in some individuals, which might be explained by variations in vitamin D pathway genes. This study aimed to investigate the effect of vitamin D supplementation by maternal and offspring vitamin D receptor (VDR) genotype and GC genotype, encoding vitamin D binding protein (VDBP), in two RCTs. METHODS: In the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2010 ) RCT, we analyzed the effect of high-dose vitamin D during pregnancy on the risk of persistent wheeze age 0-3 years by variants in single nucleotide polymorphisms (SNPs) in VDR (rs1544410, rs2228570, rs7975128, rs7975232) and GC (rs4588, rs7041). Replication was sought in the Vitamin D Antenatal Asthma Reduction Trial (VDAART). RESULTS: In COPSAC2010 , VDR SNP rs1544410 influenced the effect of high-dose vitamin D: maternal Pinteraction = .049 and child Pinteraction = .001, with the largest effect in offspring from mothers with TT genotype: hazard ratio (95% CI), 0.26 (0.10-0.68), P = .006, and no effect among CT or CC genotypes: 0.85 (0.48-1.51), P = .58 and 0.94 (0.47-1.89), P = .87, respectively. However, these findings were not replicated in VDAART. There was no significant effect modification from maternal or offspring GC genotype in either COPSAC2010 or VDAART: all Pinteraction ≥ .17. CONCLUSIONS: We found that the effect of high-dose vitamin D supplementation during pregnancy on offspring risk of persistent wheeze was significantly influenced by VDR genotype in the COPSAC2010 RCT, but not VDAART, which may be due to population differences.
Asunto(s)
Asma , Vitamina D , Asma/genética , Asma/prevención & control , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Lactante , Recién Nacido , Polimorfismo de Nucleótido Simple , Embarazo , Receptores de Calcitriol/genética , Ruidos Respiratorios/genética , Proteína de Unión a Vitamina D/genéticaRESUMEN
Asthma with severe exacerbation is the most common cause of hospitalization among young children. We aim to increase the understanding of this clinically important disease entity through a genome-wide association study. The discovery analysis comprises 2866 children experiencing severe asthma exacerbation between ages 2 and 6 years, and 65,415 non-asthmatic controls, and we replicate findings in 918 children from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) birth cohorts. We identify rs281379 near FUT2/MAMSTR on chromosome 19 as a novel risk locus (OR = 1.18 (95% CI = 1.11-1.25), Pdiscovery = 2.6 × 10-9) as well as a biologically plausible interaction between functional variants in FUT2 and ABO. We further discover and replicate a potential causal mechanism behind this interaction related to S. pneumoniae respiratory illnesses. These results suggest a novel mechanism of early childhood asthma and demonstrates the importance of phenotype-specificity for discovery of asthma genes and epistasis.