Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ecol Evol ; 14(1): e10764, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38187919

RESUMEN

Sexes of a species may show different characteristics beyond the differences in their sexual organs and such sexual dimorphism often occurs in the level of immune response when exposed to pathogens (immunocompetence). In general, females have increased longevity relative to males, which is associated with higher immunocompetence. However, males have higher immunocompetence in some species, such as pipefishes and seahorses. Experimental evidence suggests that this could be because males, rather than females, carry fertilized eggs to birth in these species. This observation suggests that an increase in immunocompetence may be related to the level of parental investment and not to a particular sex. We use state-dependent life-history theory to study optimal investment in offspring production relative to parent immunocompetence, varying the relative time that a parent spends in brooding or pregnancy within a breeding cycle. When offspring is dependent on a parent's survival for a large part of the breeding cycle, we predict higher investments in immunity and longer life expectancies.

2.
Front Psychol ; 14: 1184804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842715

RESUMEN

The notion that motivation is imperative for students' psychological well-being and academic functioning is central to Self-Determination Theory (SDT). According to SDT, different types of motivations can co-occur to a various degree with separate outcomes, depending on the extent of experienced degree of autonomy. In the current study, we investigate how making a learning exercise more relevant for higher education STEM students can affect aspects of student functioning mediated through motivation. In a randomized experiment, results indicate that the students who received a more "relevant" assignment (experimental group) experienced more autonomous forms of motivation relative to the students who received a "generic" or "traditional" exercise (control group). Further, the experimental group reported higher levels of vitality and effort relative to the control group. Using a pre- and post-test design measuring changes in emotional affect during the learning activity, we found that the control group reported an increase in negative affect and a decrease in positive affect. Finally, path analysis showed significant relationships between the type of assignment provided and motivation and student functioning.

3.
Ecol Evol ; 13(7): e10318, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456066

RESUMEN

Using a dynamic optimisation model for juvenile fish in stochastic food environments, we investigate optimal hormonal regulation, energy allocation and foraging behaviour of a growing host infected by a parasite that only incurs an energetic cost. We find it optimal for the infected host to have higher levels of orexin, growth and thyroid hormones, resulting in higher activity levels, increased foraging and faster growth. This growth strategy thus displays several of the fingerprints often associated with parasite manipulation: higher levels of metabolic hormones, faster growth, higher allocation to reserves (i.e. parasite-induced gigantism), higher risk-taking and eventually higher predation rate. However, there is no route for manipulation in our model, so these changes reflect adaptive host compensatory responses. Interestingly, several of these changes also increase the fitness of the parasite. Our results call for caution when interpreting observations of gigantism or risky host behaviours as parasite manipulation without further testing.

5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35042830

RESUMEN

In many social animals, females mate with multiple males, but the adaptive value of female extra-pair mating is not fully understood. Here, we tested whether male pied flycatchers (Ficedula hypoleuca) engaging in extra-pair copulations with neighboring females were more likely to assist their neighbors in antipredator defense. We found that extra-pair sires joined predator-mobbing more often, approached predators more closely, and attacked predators more aggressively than males without extra-pair offspring in the neighboring nest. Extra-pair mating may incentivize males to assist in nest defense because of the benefits that this cooperative behavior has on their total offspring production. For females, this mating strategy may help recruit more males to join in antipredator defense, offering better protection and ultimately improving reproductive success. Our results suggest a simple mechanism by which extra-pair mating can improve reproductive success in breeding birds. In summary, males siring extra-pair offspring in neighboring nests assist neighbors in antipredator defense more often than males without extra-pair offspring.


Asunto(s)
Copulación/fisiología , Passeriformes/fisiología , Conducta Sexual Animal/fisiología , Animales , Femenino , Masculino , Reproducción/fisiología
6.
Biol Open ; 9(2)2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31996351

RESUMEN

Growth is an important theme in biology. Physiologists often relate growth rates to hormonal control of essential processes. Ecologists often study growth as a function of gradients or combinations of environmental factors. Fewer studies have investigated the combined effects of environmental and hormonal control on growth. Here, we present an evolutionary optimization model of fish growth that combines internal regulation of growth by hormone levels with the external influence of food availability and predation risk. The model finds a dynamic hormone profile that optimizes fish growth and survival up to 30 cm, and we use the probability of reaching this milestone as a proxy for fitness. The complex web of interrelated hormones and other signalling molecules is simplified to three functions represented by growth hormone, thyroid hormone and orexin. By studying a range from poor to rich environments, we find that the level of food availability in the environment results in different evolutionarily optimal strategies of hormone levels. With more food available, higher levels of hormones are optimal, resulting in higher food intake, standard metabolism and growth. By using this fitness-based approach we also find a consequence of evolutionary optimization of survival on optimal hormone use. Where foraging is risky, the thyroid hormone can be used strategically to increase metabolic potential and the chance of escaping from predators. By comparing model results to empirical observations, many mechanisms can be recognized, for instance a change in pace-of-life due to resource availability, and reduced emphasis on reserves in more stable environments.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Adaptación Biológica , Peces/fisiología , Hormonas/metabolismo , Factores de Edad , Animales , Evolución Biológica , Sistema Endocrino/fisiología , Ambiente , Hormonas/genética , Modelos Biológicos
7.
R Soc Open Sci ; 7(12): 201886, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33489298

RESUMEN

To understand animal wellbeing, we need to consider subjective phenomena and sentience. This is challenging, since these properties are private and cannot be observed directly. Certain motivations, emotions and related internal states can be inferred in animals through experiments that involve choice, learning, generalization and decision-making. Yet, even though there is significant progress in elucidating the neurobiology of human consciousness, animal consciousness is still a mystery. We propose that computational animal welfare science emerges at the intersection of animal behaviour, welfare and computational cognition. By using ideas from cognitive science, we develop a functional and generic definition of subjective phenomena as any process or state of the organism that exists from the first-person perspective and cannot be isolated from the animal subject. We then outline a general cognitive architecture to model simple forms of subjective processes and sentience. This includes evolutionary adaptation which contains top-down attention modulation, predictive processing and subjective simulation by re-entrant (recursive) computations. Thereafter, we show how this approach uses major characteristics of the subjective experience: elementary self-awareness, global workspace and qualia with unity and continuity. This provides a formal framework for process-based modelling of animal needs, subjective states, sentience and wellbeing.

8.
Proc Biol Sci ; 281(1791): 20141096, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25100697

RESUMEN

Studies on the relationship between the optimal phenotype and its environment have had limited focus on genotype-to-phenotype pathways and their evolutionary consequences. Here, we study how multi-layered trait architecture and its associated constraints prescribe diversity. Using an idealized model of the emotion system in fish, we find that trait architecture yields genetic and phenotypic diversity even in absence of frequency-dependent selection or environmental variation. That is, for a given environment, phenotype frequency distributions are predictable while gene pools are not. The conservation of phenotypic traits among these genetically different populations is due to the multi-layered trait architecture, in which one adaptation at a higher architectural level can be achieved by several different adaptations at a lower level. Our results emphasize the role of convergent evolution and the organismal level of selection. While trait architecture makes individuals more constrained than what has been assumed in optimization theory, the resulting populations are genetically more diverse and adaptable. The emotion system in animals may thus have evolved by natural selection because it simultaneously enhances three important functions, the behavioural robustness of individuals, the evolvability of gene pools and the rate of evolutionary innovation at several architectural levels.


Asunto(s)
Emociones , Peces/fisiología , Variación Genética , Fenotipo , Adaptación Fisiológica , Animales , Evolución Biológica , Ambiente , Peces/genética , Modelos Biológicos
9.
PLoS One ; 9(7): e99878, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24987839

RESUMEN

A striking but unexplained pattern in biology is the promiscuous mating behaviour in socially monogamous species. Although females commonly solicit extra-pair copulations, the adaptive reason has remained elusive. We use evolutionary modelling of breeding ecology to show that females benefit because extra-pair paternity incentivizes males to shift focus from a single brood towards the entire neighbourhood, as they are likely to have offspring there. Male-male cooperation towards public goods and dear enemy effects of reduced territorial aggression evolve from selfish interests, and lead to safer and more productive neighbourhoods. The mechanism provides adaptive explanations for the common empirical observations that females engage in extra-pair copulations, that neighbours dominate as extra-pair sires, and that extra-pair mating correlates with predation mortality and breeding density. The models predict cooperative behaviours at breeding sites where males cooperate more towards public goods than females. Where maternity certainty makes females care for offspring at home, paternity uncertainty and a potential for offspring in several broods make males invest in communal benefits and public goods. The models further predict that benefits of extra-pair mating affect whole nests or neighbourhoods, and that cuckolding males are often cuckolded themselves. Derived from ecological mechanisms, these new perspectives point towards the evolution of sociality in birds, with relevance also for mammals and primates including humans.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Conducta Sexual Animal , Animales , Aves , Cruzamiento , Femenino , Masculino
10.
J Ecol ; 102(6): 1475-1484, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25558091

RESUMEN

SUMMERY: The water-impermeable seed coat of 'hard' seeds is commonly considered a dormancy trait. Seed smell is, however, strongly correlated with seed water content, and hard seeds are therefore olfactionally cryptic to foraging rodents. This is the rationale for the crypsis hypothesis, which proposes that the primary functions of hard seeds are to reduce seed predation and promote rodent seed dispersal. We use a mechanistic model to describe seed survival success of plants with different dimorphic soft and hard seed strategies. The model is based on established empirical-ecological relationships of moisture requirements for germination and benefits of seed dispersal, and on experimentally demonstrated relationships between seed volatile emission, predation and predator escape. We find that water-impermeable seed coats can reduce seed predation under a wide range of natural humidity conditions. Plants with rodent dispersed seeds benefit from producing dimorphic soft and hard seeds at ratios where the anti-predator advantages of hard seeds are balanced by the dispersal benefits gained by producing some soft seeds. The seed pathway predicted from the model is similar to those of experimental seed-tracking studies. This validates the relevance and realism of the ecological mechanisms and relationships incorporated in the model. Synthesis. Rodent seed predators are often also important seed dispersers and have the potential to exert strong selective pressures on seeds to evolve methods of avoiding detection, and hard seeds seem to do just that. This work suggests that water-impermeable hard seeds may evolve in the absence of a dormancy function and that optimal seed survival in many environments with rodent seed predators is obtained by plants having a dimorphic soft and hard seed strategy.

11.
Am Nat ; 182(6): 689-703, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24231532

RESUMEN

A central simplifying assumption in evolutionary behavioral ecology has been that optimal behavior is unaffected by genetic or proximate constraints. Observations and experiments show otherwise, so that attention to decision architecture and mechanisms is needed. In psychology, the proximate constraints on decision making and the processes from perception to behavior are collectively described as the emotion system. We specify a model of the emotion system in fish that includes sensory input, neuronal computation, developmental modulation, and a global organismic state and restricts attention during decision making for behavioral outcomes. The model further includes food competition, safety in numbers, and a fluctuating environment. We find that emergent strategies in evolved populations include common emotional appraisal of sensory input related to fear and hunger and also include frequency-dependent rules for behavioral responses. Focused attention is at times more important than spatial behavior for growth and survival. Spatial segregation of the population is driven by personality differences. By coupling proximate and immediate influences on behavior with ultimate fitness consequences through the emotion system, this approach contributes to a unified perspective on the phenotype, by integrating effects of the environment, genetics, development, physiology, behavior, life history, and evolution.


Asunto(s)
Adaptación Biológica , Conducta Animal , Emociones , Peces/fisiología , Modelos Teóricos , Animales , Simulación por Computador , Toma de Decisiones , Femenino , Masculino
12.
Oecologia ; 172(2): 399-408, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23180421

RESUMEN

The importance of sexual selection for the evolution, dynamics and adaptation of organisms is well known for many species. However, the topic is rarely studied in marine plankton, the basis of the marine food web. Copepods show behaviors that suggest the existence of sexually selected traits, and recent laboratory experiments identified some selected morphological traits. Here, we use a 'life history-based' model of sex roles to determine the optimal choosiness behavior of male and female copepods for important copepod traits. Copepod females are predicted to be choosy at population densities typically occurring during the main breeding season, whereas males are not. The main drivers of this pattern are population density and the difference in non-receptive periods between males and females. This suggests that male reproductive traits have evolved mainly due to mate competition. The model can easily be parameterized for other planktonic organisms, and be used to plan experiments about sexual selection.


Asunto(s)
Copépodos/fisiología , Modelos Biológicos , Conducta Sexual Animal , Animales , Femenino , Masculino , Preferencia en el Apareamiento Animal , Densidad de Población , Especificidad de la Especie
13.
Am Nat ; 174(4): 478-89, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19694535

RESUMEN

The value of acquiring environmental information depends on the costs of collecting it and its utility. Foragers that search for patchily distributed resources may use experiences in previous patches to learn the habitat quality and adjust their behavior. We map the ecological landscape for the evolution of learning under a range of conditions, including both spatial and temporal heterogeneity. We compare the learning strategy with genetically fixed patch-leaving rules and with strategies of foragers that have free and perfect information about their environment. The model reveals that the efficiency of learning is highest when low encounter stochasticity results in reliable estimates of patch quality, when there is no or little temporal change, and when there is little spatial variability. This partially contrasts with the value of learning, which is highest when there is temporal change, because flexible strategies may track the environmental trend, and when there is spatial variability, because there is a need to distinguish between good and bad patches. Learning rules with short-term memory are beneficial when patch information is accurate and when there is temporal change, whereas learning rules that update slowly are generally more robust to spatial variability.


Asunto(s)
Conducta Apetitiva , Evolución Biológica , Aprendizaje , Modelos Genéticos , Adaptación Biológica , Animales , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA