Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Control Release ; 369: 63-74, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513729

RESUMEN

Recent studies in colorectal cancer patients (CRC) have shown that increased resistance to thymidylate synthase (TS) inhibitors such as 5-fluorouracil (5-FU), reduce the efficacy of standard of care (SoC) treatment regimens. The nucleotide pool cleanser dUTPase is highly expressed in CRC and is an attractive target for potentiating anticancer activity of chemotherapy. The purpose of the current work was to investigate the activity of P1, P4-di(2',5'-dideoxy-5'-selenouridinyl)-tetraphosphate (P4-SedU2), a selenium-modified symmetrically capped dinucleoside with prodrug capabilities that is specifically activated by dUTPase. Using mechanochemistry, P4-SedU2 and the corresponding selenothymidine analogue P4-SeT2 were prepared with a yield of 19% and 30% respectively. The phosphate functionality facilitated complexation with the amphipathic cell-penetrating peptide RALA to produce nanoparticles (NPs). These NPs were designed to deliver P4-SedU2 intracellularly and thereby maximise in vivo activity. The NPs demonstrated effective anti-cancer activity and selectivity in the HCT116 CRC cell line, a cell line that overexpresses dUTPase; compared to HT29 CRC cells and NCTC-929 fibroblast cells which have reduced levels of dUTPase expression. In vivo studies in BALB/c SCID mice revealed no significant toxicity with respect to weight or organ histology. Pharmacokinetic analysis of blood serum showed that RALA facilitates effective delivery and rapid internalisation into surrounding tissues with NPs eliciting lower plasma Cmax than the equivalent injection of free P4-SedU2, translating the in vitro findings. Tumour growth delay studies have demonstrated significant inhibition of growth dynamics with the tumour doubling time extended by >2weeks. These studies demonstrate the functionality and action of a new pro-drug nucleotide for CRC.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Nanopartículas , Profármacos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Profármacos/administración & dosificación , Profármacos/farmacocinética , Profármacos/uso terapéutico , Profármacos/química , Profármacos/farmacología , Humanos , Nanopartículas/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Pirofosfatasas/antagonistas & inhibidores , Femenino , Línea Celular Tumoral , Péptidos/química , Péptidos/administración & dosificación , Péptidos/farmacocinética , Péptidos/farmacología , Ratones Endogámicos BALB C , Ratones , Nucleótidos/administración & dosificación , Nucleótidos/química , Nucleótidos/farmacocinética , Células HCT116
2.
Biomaterials ; 303: 122398, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37979514

RESUMEN

Very large bone defects significantly diminish the vascular, blood, and nutrient supply to the injured site, reducing the bone's ability to self-regenerate and complicating treatment. Delivering nanomedicines from biomaterial scaffolds that induce host cells to produce bone-healing proteins is emerging as an appealing solution for treating these challenging defects. In this context, microRNA-26a mimics (miR-26a) are particularly interesting as they target the two most relevant processes in bone regeneration-angiogenesis and osteogenesis. However, the main limitation of microRNAs is their poor stability and issues with cytosolic delivery. Thus, utilising a collagen-nanohydroxyapatite (coll-nHA) scaffold in combination with cell-penetrating peptide (RALA) nanoparticles, we aimed to develop an effective system to deliver miR-26a nanoparticles to regenerate bone defects in vivo. The microRNA-26a complexed RALA nanoparticles, which showed the highest transfection efficiency, were incorporated into collagen-nanohydroxyapatite scaffolds and in vitro assessment demonstrated the miR-26a-activated scaffolds effectively transfected human mesenchymal stem cells (hMSCs) resulting in enhanced production of vascular endothelial growth factor, increased alkaline phosphatase activity, and greater mineralisation. After implantation in critical-sized rat calvarial defects, micro CT and histomorphological analysis revealed that the miR-26a-activated scaffolds improved bone repair in vivo, producing new bone of superior quality, which was highly mineralised and vascularised compared to a miR-free scaffold. This innovative combination of osteogenic collagen-nanohydroxyapatite scaffolds with multifunctional microRNA-26a complexed nanoparticles provides an effective carrier delivering nanoparticles locally with high efficacy and minimal off-target effects and demonstrates the potential of targeting osteogenic-angiogenic coupling using scaffold-based nanomedicine delivery as a new "off-the-shelf" product capable of healing complex bone injuries.


Asunto(s)
MicroARNs , Osteogénesis , Animales , Humanos , Ratas , Regeneración Ósea , Diferenciación Celular , Colágeno , MicroARNs/genética , MicroARNs/metabolismo , Andamios del Tejido , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
J Control Release ; 362: 489-501, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673308

RESUMEN

Bone-related injuries and diseases are among the most common causes of morbidity worldwide. Current bone-regenerative strategies such as auto- and allografts are invasive by nature, with adverse effects such as pain, infection and donor site morbidity. MicroRNA (miRNA) gene therapy has emerged as a promising area of research, with miRNAs capable of regulating multiple gene pathways simultaneously through the repression of post-transcriptional mRNAs. miR-26a is a key regulator of osteogenesis and has been found to be upregulated following bone injury, where it induces osteodifferentiation of mesenchymal stem cells (MSCs) and facilitates bone formation. This study demonstrates, for the first time, that the amphipathic, cell-penetrating peptide RALA can efficiently deliver miR-26a to MSCs in vitro to regulate osteogenic signalling. Transfection with miR-26a significantly increased expression of osteogenic and angiogenic markers at both gene and protein level. Using a rat calvarial defect model with a critical size defect, RALA/miR-26a NPs were delivered via an injectable, thermo-responsive Cs-g-PNIPAAm hydrogel to assess the impact on both rate and quality of bone healing. Critical defects treated with the RALA/miR-26a nanoparticles (NPs) had significantly increased bone volume and bone mineral density at 8 weeks, with increased blood vessel formation and mechanical properties. This study highlights the utility of RALA to deliver miR-26a for the purpose of bone healing within an injectable biomaterial, warranting further investigation of dose-related efficacy of the therapeutic across a range of in vivo models.

4.
Mol Ther Methods Clin Dev ; 30: 194-207, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37502665

RESUMEN

Because of continual generation of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to design the next generation of vaccines to combat the threat posed by SARS-CoV-2 variants. We developed human adenovirus (HAd) vector-based vaccines (HAd-Spike/C5 and HAd-Spike) that express the whole Spike (S) protein of SARS-CoV-2 with or without autophagy-inducing peptide C5 (AIP-C5), respectively. Mice or golden Syrian hamsters immunized intranasally (i.n.) with HAd-Spike/C5 induced similar levels of S-specific humoral immune responses and significantly higher levels of S-specific cell-mediated immune (CMI) responses compared with HAd-Spike vaccinated groups. These results indicated that inclusion of AIP-C5 induced enhanced S-specific CMI responses and similar levels of virus-neutralizing titers against SARS-CoV-2 variants. To investigate the protection efficacy, golden Syrian hamsters immunized i.n. either with HAd-Spike/C5 or HAd-Spike were challenged with SARS-CoV-2. The lungs and nasal turbinates were collected 3, 5, 7, and 14 days post challenge. Significant reductions in morbidity, virus titers, and lung histopathological scores were observed in immunized groups compared with the mock- or empty vector-inoculated groups. Overall, slightly better protection was seen in the HAd-Spike/C5 group compared with the HAd-Spike group.

5.
J Enzyme Inhib Med Chem ; 37(1): 51-61, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34894972

RESUMEN

Neisseria gonorrhoeae is a high-priority pathogen of concern due to the growing prevalence of resistance development against approved antibiotics. Herein, we report the anti-gonococcal activity of ethoxzolamide, the FDA-approved human carbonic anhydrase inhibitor. Ethoxzolamide displayed an MIC50, against a panel of N. gonorrhoeae isolates, of 0.125 µg/mL, 16-fold more potent than acetazolamide, although both molecules exhibited almost similar potency against the gonococcal carbonic anhydrase enzyme (NgCA) in vitro. Acetazolamide displayed an inhibition constant (Ki) versus NgCA of 74 nM, while Ethoxzolamide's Ki was estimated to 94 nM. Therefore, the increased anti-gonococcal potency of ethoxzolamide was attributed to its increased permeability in N. gonorrhoeae as compared to that of acetazolamide. Both drugs demonstrated bacteriostatic activity against N. gonorrhoeae, exhibited post-antibiotic effects up to 10 hours, and resistance was not observed against both. Taken together, these results indicate that acetazolamide and ethoxzolamide warrant further investigation for translation into effective anti-N. gonorrhoeae agents.


Asunto(s)
Acetazolamida/farmacología , Antibacterianos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Etoxzolamida/farmacología , Neisseria gonorrhoeae/efectos de los fármacos , Acetazolamida/síntesis química , Acetazolamida/química , Antibacterianos/síntesis química , Antibacterianos/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Etoxzolamida/síntesis química , Etoxzolamida/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Neisseria gonorrhoeae/enzimología , Relación Estructura-Actividad , Estados Unidos , United States Food and Drug Administration
6.
Clin Transl Immunology ; 10(10): e1345, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34667600

RESUMEN

Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.

7.
Viruses ; 13(8)2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34452358

RESUMEN

Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.


Asunto(s)
Adenoviridae/genética , Enfermedades Transmisibles/inmunología , Vectores Genéticos , Vacunas/genética , Vacunas/inmunología , Adenoviridae/clasificación , Adenoviridae/inmunología , Animales , Bovinos , Control de Enfermedades Transmisibles , Perros , Técnicas de Transferencia de Gen , Inmunidad Innata , Inmunización , Ratones
8.
ACS Infect Dis ; 7(7): 1969-1984, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33765392

RESUMEN

Neisseria gonorrhoeae is an urgent threat to public health in the United States and around the world. Many of the current classes of antibiotics to treat N. gonorrhoeae infection are quickly becoming obsolete due to increased rates of resistance. Thus, there is a critical need for alternative antimicrobial targets and new chemical entities. Our team has repurposed the FDA-approved carbonic anhydrase inhibitor scaffold of acetazolamide to target N. gonorrhoeae and the bacteria's essential carbonic anhydrase, NgCA. This study established both structure-activity and structure-property relationships that contribute to both antimicrobial activity and NgCA activity. This ultimately led to molecules 20 and 23, which displayed minimum inhibitory concentration values as low as 0.25 µg/mL equating to an 8- to 16-fold improvement in antigonococcal activity compared to acetazolamide. These analogues were determined to be bacteriostatic against the pathogen and likely on-target against NgCA. Additionally, they did not exhibit any detrimental effects in cellular toxicity assays against both a human endocervical (End1/E6E7) cell line or colorectal adenocarcinoma cell line (Caco-2) at concentrations up to 128 µg/mL. Taken together, this study presents a class of antigonococcal agents with the potential to be advanced for further evaluation in N. gonorrhoeae infection models.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Neisseria gonorrhoeae , Acetazolamida/farmacología , Células CACO-2 , Inhibidores de Anhidrasa Carbónica/farmacología , Humanos , Relación Estructura-Actividad
9.
Artículo en Inglés | MEDLINE | ID: mdl-33495225

RESUMEN

Vancomycin-resistant enterococci (VRE) represent a major public health threat that requires the development of new therapeutics. In the present study, acetazolamide (AZM) was evaluated against enterococci. It inhibited different enterococcal strains tested at clinically achievable concentrations. Moreover, AZM outperformed linezolid, the drug of choice for VRE infections, in two in vivo VRE mouse models-murine colonization-reduction and VRE septicemia. Collectively, these results indicate that AZM warrants consideration as a promising treatment option for VRE infections.


Asunto(s)
Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Acetazolamida/farmacología , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Linezolid/farmacología , Ratones
10.
Vaccines (Basel) ; 8(4)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019589

RESUMEN

Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe. In this review, we discuss the progress in the development of Ad vector-based influenza vaccines and their potential in designing a universal influenza vaccine.

11.
J Med Chem ; 63(17): 9540-9562, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787141

RESUMEN

Vancomycin-resistant enterococci (VRE) are the second leading cause of hospital-acquired infections (HAIs) attributed to a drug-resistant bacterium in the United States, and resistance to the frontline treatments is well documented. To combat VRE, we have repurposed the FDA-approved carbonic anhydrase drug acetazolamide to design potent antienterococcal agents. Through structure-activity relationship optimization we have arrived at two leads possessing improved potency against clinical VRE strains from MIC = 2 µg/mL (acetazolamide) to MIC = 0.007 µg/mL (22) and 1 µg/mL (26). Physicochemical properties were modified to design leads that have either high oral bioavailability to treat systemic infections or low intestinal permeability to treat VRE infections in the gastrointestinal tract. Our data suggest the intracellular targets for the molecules are putative α-carbonic and γ-carbonic anhydrases, and homology modeling and molecular dynamics simulations were performed. Together, this study presents potential anti-VRE therapeutic options to provide alternatives for problematic VRE infections.


Asunto(s)
Acetazolamida/química , Acetazolamida/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Diseño de Fármacos , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Acetazolamida/farmacocinética , Acetazolamida/toxicidad , Animales , Antibacterianos/farmacocinética , Antibacterianos/toxicidad , Células CACO-2 , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Distribución Tisular
12.
Artículo en Inglés | MEDLINE | ID: mdl-32509746

RESUMEN

Wound-associated infections are a significant and rising health concern throughout the world owing to aging population, prevalence of diabetes, and obesity. In addition, the rapid increase of life-threatening antibiotic resistant infections has resulted in challenging wound complications with limited choices of effective therapeutics. Recently, topical ozone therapy has shown to be a promising alternative approach for treatment of non-healing and infected wounds by providing strong antibacterial properties while stimulating the local tissue repair and regeneration. However, utilization of ozone as a treatment for infected wounds has been challenging thus far due to the need for large equipment usable only in contained, clinical settings. This work reports on the development of a portable topical ozone therapy system comprised of a flexible and disposable semipermeable dressing connected to a portable and reusable ozone-generating unit via a flexible tube. The dressing consists of a multilayered structure with gradient porosities to achieve uniform ozone distribution. The effective bactericidal properties of the ozone delivery platform were confirmed with two of the most commonly pathogenic bacteria found in wound infections, Pseudomonas aeruginosa and Staphylococcus epidermidis. Furthermore, cytotoxicity tests with human fibroblasts cells indicated no adverse effects on human cells.

13.
J Oncol ; 2020: 3712825, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32565802

RESUMEN

Triple negative breast cancer (TNBC) is a poor outcome subset of breast cancers characterised by the lack of expression of ER α, PR, and HER2 amplification. It is a heterogeneous group of cancers which fail to derive benefit from modern, more targeted treatments such as Tamoxifen and Herceptin. Current standard of care (SoC) is cytotoxic chemotherapy, which is effective for some patients, with other patients deriving little/no benefit and lacking alternative treatments. This study has identified the glucocorticoid receptor (GR) as a potential predictive biomarker of response to anthracycline-based chemotherapy in triple negative breast cancer (TNBC). GR gene expression levels in patient samples were analysed through publicly available microarray datasets as well as protein expression through immunohistochemistry (IHC) and correlated with clinical/pathological outcomes, including survival. While the results confirmed previous observations that high GR expression is associated with poor outcome in response to taxane-based chemotherapy, this study shows for the first time that high GR expression is associated with improved outcomes in the context of anthracycline-based chemotherapy. GR therefore has the potential to be used as a predictive biomarker to guide treatment choices and ensure that patients derive the greatest benefit from first line treatment, avoiding unnecessary costs, side effects, and disease progression.

14.
Sci Rep ; 10(1): 5602, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221472

RESUMEN

Neisseria gonorrhoeae represents an urgent public health threat due to the rapid emergence of resistance to current antibiotics and the limited number of anti-gonococcal agents currently in clinical trials. This study utilized a drug repositioning strategy to investigate FDA-approved gold-containing drugs against N. gonorrhoeae. Auranofin, sodium aurothiomalate and aurothioglucose inhibited 48 clinical isolates of N. gonorrhoeae including multidrug-resistant strains at a concentration as low as 0.03 µg/mL. A time-kill assay revealed that auranofin exhibited rapid bactericidal activity against N. gonorrhoeae. Moreover, both sodium aurothiomalate and aurothioglucose did not inhibit growth of vaginal protective commensal lactobacilli. Auranofin, in combination with azithromycin, ceftriaxone, cefixime or tetracycline showed an additive effect against four N. gonorrhoeae strains, suggesting the possibility of using auranofin in dual therapy. Moreover, auranofin reduced the burden of intracellular N. gonorrhoeae by over 99% outperforming the drug of choice ceftriaxone. Auranofin was found superior to ceftriaxone in reducing the secretion of the pro-inflammatory cytokine IL-8 by endocervical cells infected with N. gonorrhoeae. Furthermore, auranofin exhibited a prolonged post-antibiotic effect over 10 h, as well as inability to generate resistant mutants. Overall, the current study suggests that repurposing gold-containing drugs, like auranofin, for treatment of gonorrhea warrants further investigation.


Asunto(s)
Antibacterianos/farmacología , Auranofina/farmacología , Neisseria gonorrhoeae/efectos de los fármacos , Auranofina/análogos & derivados , Ceftriaxona/farmacología , Farmacorresistencia Bacteriana Múltiple , Oro , Gonorrea/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA