Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto principal
Asunto de la revista
Intervalo de año de publicación
1.
Curr Pharm Des ; 29(34): 2752-2762, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37921134

RESUMEN

BACKGROUND: In the case of COVID-19 patients, it has been observed that the immune system of the infected person exhibits an extreme inflammatory response known as cytokine release syndrome (CRS) where the inflammatory cytokines are swiftly produced in quite large amounts in response to infective stimuli. Numerous case studies of COVID-19 patients with severe symptoms have documented the presence of higher plasma concentrations of human interleukin-6 (IL-6), which suggests that IL-6 is a crucial factor in the pathophysiology of the disease. In order to prevent CRS in COVID-19 patients, the drugs that can exhibit binding interactions with IL-6 and block the signaling pathways to decrease the IL-6 activity may be repurposed. METHODS: This research work focused on molecular docking-based screening of the drugs celecoxib (CXB) and dexamethasone (DME) to explore their potential to interact with the binding sites of IL-6 protein and reduce the hyper-activation of IL-6 in the infected personnel. RESULTS: Both of the drugs were observed to bind with the IL-6 (IL-6 receptor alpha chain) and IL-6Rα receptor with the respective affinities of -7.3 kcal/mol and -6.3 kcal/mol, respectively, for CXB and DME. Moreover, various types of binding interactions of the drugs with the target proteins were also observed in the docking studies. The dynamic behaviors of IL-6/IL-6Rα in complex with the drugs were also explored through molecular dynamics simulation analysis. The results indicated significant stabilities of the acquired drug-protein complexes up to 100 ns. CONCLUSION: The findings of this study have suggested the potential of the drugs studied to be utilized as antagonists for countering CRS in COVID-19 ailment. This study presents the studied drugs as promising candidates both for the clinical and pre-clinical treatment of COVID-19.


Asunto(s)
COVID-19 , Humanos , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Interleucina-6 , Celecoxib/farmacología , Celecoxib/uso terapéutico , SARS-CoV-2 , Simulación del Acoplamiento Molecular , Tratamiento Farmacológico de COVID-19 , Dexametasona/farmacología , Dexametasona/uso terapéutico , Inteligencia Artificial
2.
Vaccines (Basel) ; 10(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36146578

RESUMEN

Despite the intense research work since the beginning of the pandemic, the pathogenesis of COVID-19 is not yet clearly understood. The previous mechanism of COVID-19, based on ACE2 tropism and explained through a single receptor, is insufficient to explain the pathogenesis due to the absence of angiotensin-converting enzyme 2 (ACE2) receptors in most of the affected organs. In the current study, we used the PatchDock server to run a molecular docking study of both the gonadotropin-releasing hormone receptor (GnRHR) and G-protein-coupled-receptor (GPCR) with the SARS-CoV-2 spike protein. Molecular Dynamics (MD) simulations were run to analyze the stability of the complexes using the GROMACS package. The docking results showed a high affinity between the spike protein with the GnRHR (-1424.9 kcal/mol) and GPCR (-1451.8 kcal/mol). The results of the MD simulations revealed the significant stability of the spike protein with the GnRHR and GPCR up to 100 ns. The SARS-CoV-2 spike protein had strong binding interactions with the GPCRs and GnRHRs, which are highly expressed in the brain, endocrine organs, and olfactory neurons. This study paves the way towards understanding the complex mechanism of neuroendocrine involvement and peripheral organ involvement, may explain the changing symptoms in patients due to new variants, and may lead to the discovery of new drug targets for COVID-19. In vitro studies involving genetic engineering or gene knockdown of the GPCRs and GnRHRs are needed to further investigate the role of these receptors in COVID-19 pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA