Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Methods ; 223: 127-135, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331125

RESUMEN

Biological membranes are highly complex supramolecular assemblies, which play central roles in biology. However, their complexity makes them challenging to study their nanoscale structures. To overcome this challenge, model membranes assembled using reduced sets of membrane-associated biomolecules have been found to be both excellent and tractable proxies for biological membranes. Due to their relative simplicity, they have been studied using a range of biophysical characterization techniques. In this review article, we will briefly detail the use of fluorescence and electron microscopies, and X-ray and neutron scattering techniques used over the past few decades to study the nanostructure of biological membranes.


Asunto(s)
Microscopía , Neutrones , Biofisica , Membrana Celular , Lípidos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36790427

RESUMEN

A bacterial isolate, B1D3AT, was isolated from river sediment collected from the Hiwassee River near Calhoun, TN, by enrichment culturing with a model 5-5' lignin dimer, dehydrodivanillate, as its sole carbon source. B1D3AT was also shown to utilize several model lignin-derived monomers and dimers as sole carbon sources in a variety of minimal media. Cells were Gram-stain-negative, aerobic, motile, rod-shaped and formed yellow/cream-coloured colonies on rich agar. Optimal growth occurred at 30 °C, pH 7-8, and in the absence of NaCl. The major fatty acids of B1D3AT were C18 : 1 ω7c and C17 : 1 ω6c. The predominant hydroxy fatty acids were C14 : 0 2-OH and C15 : 0 2-OH. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine and sphingoglycolipid. B1D3AT contained spermidine as the only major polyamine. The major isoprenoid quinone was Q-10 with minor amounts of Q-9 and Q-11. The genomic DNA G+C content of B1D3AT was 65.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 49 core, universal genes defined by Clusters of Orthologous Groups gene families indicated that B1D3AT was a member of the genus Sphingobium. B1D3AT was most closely related to Sphingobium sp. SYK-6, with a 100 % 16S rRNA gene sequence similarity. B1D3AT showed 78.1-89.9 % average nucleotide identity and 19.5-22.2% digital DNA-DNA hybridization identity with other type strains from the genus Sphingobium. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain B1D3AT should be classified as representing a novel species of the genus Sphingobium, for which the name Sphingobium lignivorans sp. nov. is proposed. The type strain is strain B1D3AT (ATCC TSD-279T=DSM 111877T).


Asunto(s)
Ácidos Grasos , Sphingomonadaceae , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Lignina , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Hibridación de Ácido Nucleico , Fosfolípidos/química
3.
Front Mol Biosci ; 9: 1011981, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339713

RESUMEN

Assessing the structure of living microbial cell membranes is a challenging analytical goal. The cell membrane is defined by its transverse structure, an approximately 5 nm-thick selectively permeable bilayer that serves many important cellular functions. Compositionally complex, dynamic, and organized in both the transverse and lateral dimensions, understanding the cell membrane structure-and the role that structure plays in cellular function, communication, and environmental sensing is an active scientific effort. Previously, we have devised a novel isotopic labeling approach for membrane lipids to enable direct in vivo structural studies of the cell membrane in the Gram-positive bacterium, Bacillus subtilis, using small-angle neutron scattering. This was accomplished through a genetic inhibition of fatty acid (FA) degradation (ΔfadN) and a chemical inhibition of FA biosynthesis using cerulenin, an irreversible inhibitor of type II fatty acid synthases. Here, we improve upon the previous system by introducing a dCas9/sgRNA-fabF complex that blocks transcription of the essential fabF gene when under xylose induction. This leads to greater sensitivity to cerulenin in the mutant strain (JEBS102) and more robust cell growth when supplementary FAs are introduced to the culture medium. A subtle change in FA uptake is noted when compared to the prior labeling strategy. This is seen in the gas chromatography/mass spectrometry (GC/MS) data as a higher ratio of n16:0 to a15:0, and manifests in an apparent increase in the membrane thickness determined via neutron scattering. This represents an improved method of isotopic labeling for the cell membrane of Bacillus subtilis; enabling improved investigations of cellular uptake and utilization of FAs, cell membrane structure and organization as a phenotypic response to metabolic and environmental changes.

4.
Environ Sci Technol ; 56(13): 9623-9631, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35699285

RESUMEN

We use global airborne observations of propane (C3H8) and ethane (C2H6) from the Atmospheric Tomography (ATom) and HIAPER Pole-to-Pole Observations (HIPPO), as well as U.S.-based aircraft and tower observations by NOAA and from the NCAR FRAPPE campaign as tracers for emissions from oil and gas operations. To simulate global mole fraction fields for these gases, we update the default emissions' configuration of C3H8 used by the global chemical transport model, GEOS-Chem v13.0.0, using a scaled C2H6 spatial proxy. With the updated emissions, simulations of both C3H8 and C2H6 using GEOS-Chem are in reasonable agreement with ATom and HIPPO observations, though the updated emission fields underestimate C3H8 accumulation in the arctic wintertime, pointing to additional sources of this gas in the high latitudes (e.g., Europe). Using a Bayesian hierarchical model, we estimate global emissions of C2H6 and C3H8 from fossil fuel production in 2016-2018 to be 13.3 ± 0.7 (95% CI) and 14.7 ± 0.8 (95% CI) Tg/year, respectively. We calculate bottom-up hydrocarbon emission ratios using basin composition measurements weighted by gas production and find their magnitude is higher than expected and is similar to ratios informed by our revised alkane emissions. This suggests that emissions are dominated by pre-processing activities in oil-producing basins.


Asunto(s)
Contaminantes Atmosféricos , Petróleo , Contaminantes Atmosféricos/análisis , Teorema de Bayes , Fósiles , Gases , Hidrocarburos , Metano/análisis , Gas Natural/análisis
5.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380737

RESUMEN

In the Arctic and Boreal region (ABR) where warming is especially pronounced, the increase of gross primary production (GPP) has been suggested as an important driver for the increase of the atmospheric CO2 seasonal cycle amplitude (SCA). However, the role of GPP relative to changes in ecosystem respiration (ER) remains unclear, largely due to our inability to quantify these gross fluxes on regional scales. Here, we use atmospheric carbonyl sulfide (COS) measurements to provide observation-based estimates of GPP over the North American ABR. Our annual GPP estimate is 3.6 (2.4 to 5.5) PgC · y-1 between 2009 and 2013, the uncertainty of which is smaller than the range of GPP estimated from terrestrial ecosystem models (1.5 to 9.8 PgC · y-1). Our COS-derived monthly GPP shows significant correlations in space and time with satellite-based GPP proxies, solar-induced chlorophyll fluorescence, and near-infrared reflectance of vegetation. Furthermore, the derived monthly GPP displays two different linear relationships with soil temperature in spring versus autumn, whereas the relationship between monthly ER and soil temperature is best described by a single quadratic relationship throughout the year. In spring to midsummer, when GPP is most strongly correlated with soil temperature, our results suggest the warming-induced increases of GPP likely exceeded the increases of ER over the past four decades. In autumn, however, increases of ER were likely greater than GPP due to light limitations on GPP, thereby enhancing autumn net carbon emissions. Both effects have likely contributed to the atmospheric CO2 SCA amplification observed in the ABR.

6.
Nature ; 590(7846): 428-432, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568809

RESUMEN

The atmospheric concentration of trichlorofluoromethane (CFC-11) has been in decline since the production of ozone-depleting substances was phased out under the Montreal Protocol1,2. Since 2013, the concentration decline of CFC-11 slowed unexpectedly owing to increasing emissions, probably from unreported production, which, if sustained, would delay the recovery of the stratospheric ozone layer1-12. Here we report an accelerated decline in the global mean CFC-11 concentration during 2019 and 2020, derived from atmospheric concentration measurements at remote sites around the world. We find that global CFC-11 emissions decreased by 18 ± 6 gigagrams per year (26 ± 9 per cent; one standard deviation) from 2018 to 2019, to a 2019 value (52 ± 10 gigagrams per year) that is similar to the 2008-2012 mean. The decline in global emissions suggests a substantial decrease in unreported CFC-11 production. If the sharp decline in unexpected global emissions and unreported production is sustained, any associated future ozone depletion is likely to be limited, despite an increase in the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) by 90 to 725 gigagrams by the beginning of 2020.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37965294

RESUMEN

Slab models are simple and useful structural descriptions which have long been used to describe lyotropic lamellar phases, such as lipid bilayers. Typically, slab models assume a midline symmetry and break a bilayer structure into three pieces, a central solvent-free core and two symmetric outer layers composed of the soluble portion of the amphiphile and associated solvent. This breakdown matches reasonably well to the distribution of neutron scattering length density and therefore is a convenient and common approach for the treatment of small-angle scattering data. Here, an implementation of this model within the SasView software suite is reported. The implementation is intended to provide physical consistency through the area per amphiphile molecule and number of solvent molecules included within the solvent-exposed outer layer. The proper use of this model requires knowledge of (or good estimates for) the amphiphile and solvent molecule volume and atomic composition, ultimately providing a self-consistent data treatment with only two free parameters: the lateral area per amphiphile molecule and the number of solvent molecules included in the outer region per amphiphile molecule. The use of this code is demonstrated in the fitting of standard lipid bilayer data sets, obtaining structural parameters consistent with prior literature and illustrating the typical and ideal cases of fitting for neutron scattering data obtained using single or multiple contrast conditions. While demonstrated here for lipid bilayers, this model is intended for general application to block copolymers, surfactants, and other lyotropic lamellar phase structures for which a slab model is able to reasonably estimate the neutron scattering length density/electron-density profile of inner and outer layers of the lamellae.

8.
Microbiol Resour Announc ; 9(49)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272987

RESUMEN

Many soil microorganisms have evolved catabolic strategies to utilize phenolic compounds arising from depolymerized lignin. We report the complete genome sequences of four Pseudomonas sp. isolates that demonstrated robust growth on a wide range of aromatic monomers and dimers that are relevant to the valorization of lignin into value-added chemicals.

9.
Nature ; 586(7828): 248-256, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33028999

RESUMEN

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Asunto(s)
Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Agricultura , Atmósfera/química , Productos Agrícolas/metabolismo , Actividades Humanas , Internacionalidad , Nitrógeno/análisis , Nitrógeno/metabolismo
10.
Front Microbiol ; 11: 914, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499768

RESUMEN

Developing cultivation methods that yield chemically and isotopically defined fatty acid (FA) compositions within bacterial cytoplasmic membranes establishes an in vivo experimental platform to study membrane biophysics and cell membrane regulation using novel approaches. Yet before fully realizing the potential of this method, it is prudent to understand the systemic changes in cells induced by the labeling procedure itself. In this work, analysis of cellular membrane compositions was paired with proteomics to assess how the proteome changes in response to the directed incorporation of exogenous FAs into the membrane of Bacillus subtilis. Key findings from this analysis include an alteration in lipid headgroup distribution, with an increase in phosphatidylglycerol lipids and decrease in phosphatidylethanolamine lipids, possibly providing a fluidizing effect on the cell membrane in response to the induced change in membrane composition. Changes in the abundance of enzymes involved in FA biosynthesis and degradation are observed; along with changes in abundance of cell wall enzymes and isoprenoid lipid production. The observed changes may influence membrane organization, and indeed the well-known lipid raft-associated protein flotillin was found to be substantially down-regulated in the labeled cells - as was the actin-like protein MreB. Taken as a whole, this study provides a greater depth of understanding for this important cell membrane experimental platform and presents a number of new connections to be explored in regard to modulating cell membrane FA composition and its effects on lipid headgroup and raft/cytoskeletal associated proteins.

11.
Atmos Chem Phys ; 20(13): 7753-7781, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33688335

RESUMEN

The global oxidation capacity, defined as the tropospheric mean concentration of the hydroxyl radical (OH), controls the lifetime of reactive trace gases in the atmosphere such as methane and carbon monoxide (CO). Models tend to underestimate the methane lifetime and CO concentrations throughout the troposphere, which is consistent with excessive OH. Approximately half of the oxidation of methane and non-methane volatile organic compounds (VOCs) is thought to occur over the oceans where oxidant chemistry has received little validation due to a lack of observational constraints. We use observations from the first two deployments of the NASA ATom aircraft campaign during July-August 2016 and January-February 2017 to evaluate the oxidation capacity over the remote oceans and its representation by the GEOS-Chem chemical transport model. The model successfully simulates the magnitude and vertical profile of remote OH within the measurement uncertainties. Comparisons against the drivers of OH production (water vapor, ozone, and NO y concentrations, ozone photolysis frequencies) also show minimal bias, with the exception of wintertime NO y . The severe model overestimate of NO y during this period may indicate insufficient wet scavenging and/or missing loss on sea-salt aerosols. Large uncertainties in these processes require further study to improve simulated NO y partitioning and removal in the troposphere, but preliminary tests suggest that their overall impact could marginally reduce the model bias in tropospheric OH. During the ATom-1 deployment, OH reactivity (OHR) below 3 km is significantly enhanced, and this is not captured by the sum of its measured components (cOHRobs) or by the model (cOHRmod). This enhancement could suggest missing reactive VOCs but cannot be explained by a comprehensive simulation of both biotic and abiotic ocean sources of VOCs. Additional sources of VOC reactivity in this region are difficult to reconcile with the full suite of ATom measurement constraints. The model generally reproduces the magnitude and seasonality of cOHRobs but underestimates the contribution of oxygenated VOCs, mainly acetaldehyde, which is severely underestimated throughout the troposphere despite its calculated lifetime of less than a day. Missing model acetaldehyde in previous studies was attributed to measurement uncertainties that have been largely resolved. Observations of peroxyacetic acid (PAA) provide new support for remote levels of acetaldehyde. The underestimate in both model acetaldehyde and PAA is present throughout the year in both hemispheres and peaks during Northern Hemisphere summer. The addition of ocean sources of VOCs in the model increases cOHRmod by 3% to 9% and improves model-measurement agreement for acetaldehyde, particularly in winter, but cannot resolve the model summertime bias. Doing so would require 100 Tg yr-1 of a long-lived unknown precursor throughout the year with significant additional emissions in the Northern Hemisphere summer. Improving the model bias for remote acetaldehyde and PAA is unlikely to fully resolve previously reported model global biases in OH and methane lifetime, suggesting that future work should examine the sources and sinks of OH over land.

12.
Front Microbiol ; 10: 2594, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798553

RESUMEN

Paenibacillus polymyxa is a Gram-positive bacterium commonly found associated with plant roots. P. polymyxa can exhibit two forms of flagellar motility: swimming in liquid culture and swarming on a surface. Here, swimming cells were compared to swarming cells using an integrated proteomic and lipidomic approach, yielding information about how lipid modifications and protein/enzyme pathways are tailored for these specific phenotypes. Observed differences in both phospholipid composition and metabolism between the two conditions suggest membrane remodeling in response to the surrounding environment. Key enzymes involved in glycerophospholipid metabolism were abundant in swimming bacteria, while enzymes associated with glycerol-3-phosphate metabolism were more abundant in swarming bacteria. Several glycoside hydrolases were either unique to or more abundant during swarming. This likely reflects the degradation of their own exopolysaccharides to both enhance swarming and supply the necessary chemical energy to compensate for increased flagellar synthesis. The observed upregulation of biosynthetic gene clusters (polyketides, lantibiotics, and surfactin) in swarming bacteria suggest the importance of signaling, antimicrobial activity, and surfactin production during this mode of motility - the latter of which is confirmed via RT-PCR.

13.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395644

RESUMEN

Here, we report the complete genome sequence of Caloramator sp. strain E03, an anaerobic thermophile that was isolated from a hot spring within the Rabbit Creek area of Yellowstone National Park. The assembly contains a single 2,984,770-bp contig with a G+C content of 31.3% and is predicted to encode 2,678 proteins.

14.
Mol Psychiatry ; 24(6): 808-818, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30903001

RESUMEN

Disrupted serotonergic neurotransmission has long been implicated in major depressive disorder (MDD), for which selective serotonin reuptake inhibitors (SSRIs) are the first line of treatment. However, a significant percentage of patients remain SSRI-resistant and it is unclear whether and how alterations in serotonergic neurons contribute to SSRI resistance in these patients. Induced pluripotent stem cells (iPSCs) facilitate the study of patient-specific neural subtypes that are typically inaccessible in living patients, enabling the discovery of disease-related phenotypes. In our study of a well-characterized cohort of over 800 MDD patients, we generated iPSCs and serotonergic neurons from three extreme SSRI-remitters (R) and SSRI-nonremitters (NR). We studied serotonin (5-HT) biochemistry and observed no significant differences in 5-HT release and reuptake or in genes related to 5-HT biochemistry. NR patient-derived serotonergic neurons exhibited altered neurite growth and morphology downstream of lowered expression of key Protocadherin alpha genes as compared to healthy controls and Rs. Furthermore, knockdown of Protocadherin alpha genes directly regulated iPSC-derived neurite length and morphology. Our results suggest that intrinsic differences in serotonergic neuron morphology and the resulting circuitry may contribute to SSRI resistance in MDD patients.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Serotonina/metabolismo , Adulto , Antidepresivos/uso terapéutico , Estudios de Cohortes , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Persona de Mediana Edad , Neuronas , Neuronas Serotoninérgicas/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Transmisión Sináptica
15.
Geophys Res Lett ; 46(10): 5601-5613, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32606484

RESUMEN

We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models.

16.
Biotechnol Biofuels ; 11: 243, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202438

RESUMEN

BACKGROUND: Anaerobic fermentation of lignocellulose occurs in both natural and managed environments, and is an essential part of the carbon cycle as well as a promising route to sustainable production of fuels and chemicals. Lignocellulose solubilization by mixed microbiomes is important in these contexts. RESULTS: Here, we report the development of stable switchgrass-fermenting enrichment cultures maintained at various residence times and moderately high (55 °C) temperatures. Anaerobic microbiomes derived from a digester inoculum were incubated at 55 °C and fed semi-continuously with medium containing 30 g/L mid-season harvested switchgrass to achieve residence times (RT) of 20, 10, 5, and 3.3 days. Stable, time-invariant cellulolytic methanogenic cultures with minimal accumulation of organic acids were achieved for all RTs. Fractional carbohydrate solubilization was 0.711, 0.654, 0.581 and 0.538 at RT = 20, 10, 5 and 3.3 days, respectively, and glucan solubilization was proportional to xylan solubilization at all RTs. The rate of solubilization was described well by the equation r = k(C - C0fr), where C represents the concentration of unutilized carbohydrate, C0 is the concentration of carbohydrate (cellulose and hemicellulose) entering the bioreactor and fr is the extrapolated fraction of entering carbohydrate that is recalcitrant at infinite residence time. The 3.3 day RT is among the shortest RT reported for stable thermophilic, methanogenic digestion of a lignocellulosic feedstock. 16S rDNA phylotyping and metagenomic analyses were conducted to characterize the effect of RT on community dynamics and to infer functional roles in the switchgrass to biogas conversion to the various microbial taxa. Firmicutes were the dominant phylum, increasing in relative abundance from 54 to 96% as RT decreased. A Clostridium clariflavum strain with genetic markers for xylose metabolism was the most abundant lignocellulose-solubilizing bacterium. A Thermotogae (Defluviitoga tunisiensis) was the most abundant bacterium in switchgrass digesters at RT = 20 days but decreased in abundance at lower RTs as did multiple Chloroflexi. Synergistetes and Euryarchaeota were present at roughly constant levels over the range of RTs examined. CONCLUSIONS: A system was developed in which stable methanogenic steady-states were readily obtained with a particulate biomass feedstock, mid-season switchgrass, at laboratory (1 L) scale. Characterization of the extent and rate of carbohydrate solubilization in combination with 16S rDNA and metagenomic sequencing provides a multi-dimensional view of performance, species composition, glycoside hydrolases, and metabolic function with varying residence time. These results provide a point of reference and guidance for future studies and organism development efforts involving defined cultures.

17.
Nature ; 557(7705): 413-417, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29769666

RESUMEN

The Montreal Protocol was designed to protect the stratospheric ozone layer by enabling reductions in the abundance of ozone-depleting substances such as chlorofluorocarbons (CFCs) in the atmosphere1-3. The reduction in the atmospheric concentration of trichlorofluoromethane (CFC-11) has made the second-largest contribution to the decline in the total atmospheric concentration of ozone-depleting chlorine since the 1990s 1 . However, CFC-11 still contributes one-quarter of all chlorine reaching the stratosphere, and a timely recovery of the stratospheric ozone layer depends on a sustained decline in CFC-11 concentrations 1 . Here we show that the rate of decline of atmospheric CFC-11 concentrations observed at remote measurement sites was constant from 2002 to 2012, and then slowed by about 50 per cent after 2012. The observed slowdown in the decline of CFC-11 concentration was concurrent with a 50 per cent increase in the mean concentration difference observed between the Northern and Southern Hemispheres, and also with the emergence of strong correlations at the Mauna Loa Observatory between concentrations of CFC-11 and other chemicals associated with anthropogenic emissions. A simple model analysis of our findings suggests an increase in CFC-11 emissions of 13 ± 5 gigagrams per year (25 ± 13 per cent) since 2012, despite reported production being close to zero 4 since 2006. Our three-dimensional model simulations confirm the increase in CFC-11 emissions, but indicate that this increase may have been as much as 50 per cent smaller as a result of changes in stratospheric processes or dynamics. The increase in emission of CFC-11 appears unrelated to past production; this suggests unreported new production, which is inconsistent with the Montreal Protocol agreement to phase out global CFC production by 2010.

18.
mBio ; 9(2)2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535201

RESUMEN

The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis, the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease.IMPORTANCE Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing. Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome "dark matter," cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.


Asunto(s)
Adaptación Biológica , Deltaproteobacteria/genética , Deltaproteobacteria/aislamiento & purificación , Evolución Molecular , Genoma Bacteriano , Encía/microbiología , Perfilación de la Expresión Génica , Transferencia de Gen Horizontal , Humanos , Ohio , Periodontitis/microbiología , Filogenia , Proteoma/análisis
19.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29475869

RESUMEN

Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species, Caldicellulosiruptor sp. strain Rt8.B8 (renamed here Caldicellulosiruptor morganii), Thermoanaerobacter cellulolyticus strain NA10 (renamed here Caldicellulosiruptor naganoensis), and Caldicellulosiruptor sp. strain Wai35.B1 (renamed here Caldicellulosiruptor danielii), degraded Avicel and lignocellulose (switchgrass). C. morganii was more efficient than Caldicellulosiruptor bescii in this regard and differed from the other 12 species examined, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related to that of Caldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter, Fervidobacterium, Caloramator, and Clostridium). One enrichment, containing 89.8% Caldicellulosiruptor and 9.7% Caloramator, had a capacity for switchgrass solubilization comparable to that of C. bescii These results refine the known biodiversity of Caldicellulosiruptor and indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes.IMPORTANCE The genus Caldicellulosiruptor contains the most thermophilic bacteria capable of lignocellulose deconstruction, which are promising candidates for consolidated bioprocessing for the production of biofuels and bio-based chemicals. The focus here is on the extant capability of this genus for plant biomass degradation and the extent to which this can be inferred from the core and pangenomes, based on analysis of 13 species and metagenomic sequence information from environmental samples. Key to microcrystalline hydrolysis is the content of the glucan degradation locus (GDL), a set of genes encoding glycoside hydrolases (GHs), several of which have GH48 and family 3 carbohydrate binding module domains, that function as primary cellulases. Resolving the relationship between the GDL and lignocellulose degradation will inform efforts to identify more prolific members of the genus and to develop metabolic engineering strategies to improve this characteristic.


Asunto(s)
Firmicutes/genética , Firmicutes/metabolismo , Genoma Bacteriano , Lignina/metabolismo , Metagenoma , Celulosa/metabolismo , Firmicutes/clasificación , Genómica , Metagenómica
20.
Biotechnol Biofuels ; 10: 233, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29213307

RESUMEN

BACKGROUND: Efficient deconstruction and bioconversion of solids at high mass loadings is necessary to produce industrially relevant titers of biofuels from lignocellulosic biomass. To date, only a few studies have investigated the effect of solids loadings on microorganisms of interest for consolidated bioprocessing. Here, the effects that various switchgrass loadings have on Clostridium thermocellum solubilization and bioconversion are investigated. RESULTS: Clostridium thermocellum was grown for 10 days on 10, 25, or 50 g/L switchgrass or Avicel at equivalent glucan loadings. Avicel was completely consumed at all loadings, but total cellulose solubilization decreased from 63 to 37% as switchgrass loadings increased from 10 to 50 g/L. Washed, spent switchgrass could be additionally hydrolyzed and fermented in second-round fermentations suggesting that access to fermentable substrates was not the limiting factor at higher feedstock loadings. Results from fermentations on Avicel or cellobiose using culture medium supplemented with 50% spent fermentation broth demonstrated that compounds present in the supernatants from the 25 or 50 g/L switchgrass loadings were the most inhibitory to continued fermentation. CONCLUSIONS: Recalcitrance alone cannot fully account for differences in solubilization and end-product formation between switchgrass and Avicel at increased substrate loadings. Experiments aimed at separating metabolic inhibition from inhibition of hydrolysis suggest that C. thermocellum's hydrolytic machinery is more vulnerable to inhibition from switchgrass-derived compounds than its fermentative metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA