Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto principal
Intervalo de año de publicación
1.
Genes (Basel) ; 13(8)2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-36011321

RESUMEN

Assessment of genetic diversity among different varieties helps to improve desired characteristics of crops, including disease resistance, early maturity, high yield, and resistance to drought. Molecular markers are one of the most effective tools for discovering genetic diversity that can increase reproductive efficiency. Simple sequence repeats (SSRs), which are codominant markers, are preferred for the determination of genetic diversity because they are highly polymorphic, multi-allelic, highly reproducible, and have good genome coverage. This study aimed to determine the genetic diversity of 40 common bean (Phaseolus vulgaris L.) landraces collected from the Ispir district located in the Northeast Anatolia region of Türkiye and five commercial varieties using SSR markers. The Twenty-seven SSR markers produced a total of 142 polymorphic bands, ranging from 2 (GATS91 and PVTT001) to 12 (BM153) alleles per marker, with an average number of 5.26 alleles. The gene diversity per marker varied between 0.37 and 0.87 for BM053 and BM153 markers, respectively. When heterozygous individuals are calculated proportional to the population, the heterozygosity ranged from 0.00 to 1.00, with an average of 0.30. The expected heterozygosity of the SSR locus ranged from 0.37 (BM053) to 0.88 (BM153), with an average of 0.69. Nei's gene diversity scored an average of 0.69. The polymorphic information content (PIC) values of SSR markers varied from 0.33 (BM053) to 0.86 (BM153), with an average of 0.63 per locus. The greatest genetic distance (0.83) was between lines 49, 50, 53, and cultivar Karacasehir-90, while the shortest (0.08) was between lines 6 and 26. In cluster analysis using Nei's genetic distance, 45 common bean genotypes were divided into three groups and very little relationship was found between the genotypes and the geographical distances. In genetic structure analysis, three subgroups were formed, including local landraces and commercial varieties. The result confirmed that the rich diversity existing in Ispir bean landraces could be used as a genetic resource in designing breeding programs and may also contribute to Türkiye bean breeding programs.


Asunto(s)
Phaseolus , Marcadores Genéticos , Variación Genética/genética , Genotipo , Humanos , Repeticiones de Microsatélite/genética , Phaseolus/genética , Fitomejoramiento
2.
Genes (Basel) ; 13(7)2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35885928

RESUMEN

Beans are legumes that play extremely important roles in human nutrition, serving as good sources of protein, vitamins, minerals, and antioxidants. In this study, we tried to elucidate the genetic diversity and population structure of 40 Turkish bean (Phaseolus vulgaris L.) local varieties and 5 commercial cultivars collected from 8 different locations in Erzurum-Ispir by using inter-primary binding site (iPBS) retrotransposon markers. For molecular characterization, the 26 most polymorphic iPBS primers were used; 52 bands per primer and 1350 bands in total were recorded. The mean polymorphism information content was 0.331. Various diversity indices, such as the mean effective allele number (0.706), mean Shannon's information index (0.546), and gene diversity (0.361) revealed the presence of sufficient genetic diversity in the germplasm examined. Molecular analysis of variance (AMOVA) revealed that 67% of variation in bean germplasm was due to differences within populations. In addition, population structure analysis exposed all local and commercial bean varieties from five sub-populations. Expected heterozygosity values ranged between 0.1567 (the fourth sub-population) and 0.3210 (first sub-population), with an average value of 0.2103. In contrary, population differentiation measurement (Fst) was identified as 0.0062 for the first sub-population, 0.6372 for the fourth subpopulations. This is the first study to investigate the genetic diversity and population structure of bean germplasm in Erzurum-Ispir region using the iPBS-retrotransposon marker system. Overall, the current results showed that iPBS markers could be used consistently to elucidate the genetic diversity of local and commercial bean varieties and potentially be included in future studies examining diversity in a larger collection of local and commercial bean varieties from different regions.


Asunto(s)
Phaseolus , Alelos , Variación Genética/genética , Humanos , Phaseolus/genética , Phaseolus/metabolismo , Polimorfismo Genético , Retroelementos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA