Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 2): 129946, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340936

RESUMEN

Organic dye pollution from textiles and other industries presents a substantial risk to people and aquatic life. The use of photocatalysis to decolorize water using the strength of UV light is one of the most important remediation techniques. In the present study, a novel nanocomposites hydrogel including carboxymethyl cellulose (CMC), acrylic acid (AAc), Zinc oxide (ZnO), and silver (Ag) nanoparticles was produced using an eco-friendly γ-irradiation technique for photocatalytic decolorization applications. ZnO and Ag nanoparticles were distributed in the CMC/AAc hydrogel matrix without significant aggregation. SEM, XRD, EDX, TEM, and FTIR analyses were used to assess the physicochemical characteristics of the nanocomposite samples. Carboxymethyl cellulose/acrylic acid/Zinc oxide doped silver (CMC/PAAc/ZnO@Ag) nanocomposite hydrogels were developed and utilized in the photocatalytic decolorization of the lerui acid brilliant blue dye (LABB) when exposed to ultraviolet (UV) radiation. UV- Vis spectrophotometry was utilized to analyze the optical properties of the produced nanostructure. Regarding the decolorization of the LABB, the impacts of operational variables were investigated. The optimum conditions for decolorization (93 %) were an initial concentration of 50 mg/L, pH = 4, catalyst dosage of 50 g/L, and exposure time of 90 min. The results illustrated that the LABB acidic dye from wastewater was remarkably decolored.


Asunto(s)
Acrilatos , Bencenosulfonatos , Nanopartículas del Metal , Nanocompuestos , Óxido de Zinc , Humanos , Óxido de Zinc/química , Hidrogeles/química , Plata/química , Carboximetilcelulosa de Sodio/química , Nanopartículas del Metal/química , Colorantes/química , Nanocompuestos/química
2.
Int J Biol Macromol ; 243: 125121, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263325

RESUMEN

Organic dye contamination, emanating from pharmaceutical, paper, and textile industries into water resources, severely threatens marine and human life even at low concentrations. Photocatalysis is one of the most important remediation techniques that decolorize water by employing the power of light. In this work, the development of floated beads of Sodium Alginate/hydroxyethyl methacrylate (Alg-g-HEMA) encompass graphene oxide (GO) decorated Zinc oxide (ZnO) utilizing ionizing radiation was designed to function as a photocatalyst when exposed to visible light. Floatability was induced using calcium carbonate. GO was sonochemically decorated with ZnO nanoparticles and the yield was characterized using XRD, FTIR, TEM, SEM, and EDX techniques. Optical characteristics of the developed nanostructure were performed using UV-Vis spectrophotometry. The photocatalytic activity of the floated (Alg-g-HEMA)-ZnO@GO beads was assessed for the photo decolorization of methylene blue dye (MB) under visible light. The upshot of operational factors such as photocatalyst dose, pH, initial dye concentration, and irradiation time on the decolorization of MB was examined. It was observed that 1 g of the developed (Alg-g-HEMA)-ZnO@GO photocatalyst was able to decolorize 1000 ml of 20 ppm of MB within 150 min at pH 9. In terms of kinetics, photo-decolorization follows Langmuir Hinshelwood pseudo-first order.


Asunto(s)
Óxido de Zinc , Humanos , Óxido de Zinc/química , Azul de Metileno/química , Luz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA