Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
2.
Exp Hematol ; 137: 104252, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876253

RESUMEN

Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1 genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.

3.
Proc Natl Acad Sci U S A ; 121(10): e2317147121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422019

RESUMEN

Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.


Asunto(s)
Leucemia , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Diferenciación Celular/genética , Genotipo , Células Madre Hematopoyéticas , Factor de Transcripción GATA2/genética
4.
Blood Adv ; 8(1): 80-92, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38029365

RESUMEN

ABSTRACT: GATA binding protein 2 (GATA2) is a conserved zinc finger transcription factor that regulates the emergence and maintenance of complex genetic programs driving development and function of hematopoietic stem and progenitor cells (HSPCs). Patients born with monoallelic GATA2 mutations develop myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML), whereas acquired GATA2 mutations are reported in 3% to 5% of sporadic AML cases. The mechanisms by which aberrant GATA2 activity promotes MDS and AML are incompletely understood. Efforts to understand GATA2 in basic biology and disease will be facilitated by the development of broadly efficacious antibodies recognizing physiologic levels of GATA2 in diverse tissue types and assays. Here, we purified a polyclonal anti-GATA2 antibody and generated multiple highly specific anti-GATA2 monoclonal antibodies, optimized them for immunohistochemistry on patient bone marrow bioosy samples, and analyzed GATA2 expression in adults with healthy bone marrow, MDS, and acute leukemia. In healthy bone marrow, GATA2 was detected in mast cells, subsets of CD34+ HSPCs, E-cadherin-positive erythroid progenitors, and megakaryocytes. In MDS, GATA2 expression correlates with bone marrow blast percentage, positively correlates with myeloid dysplasia and complex cytogenetics, and is a nonindependent negative predictor of overall survival. In acute leukemia, the percent of GATA2+ blasts closely associates with myeloid lineage, whereas a subset of lymphoblastic and undifferentiated leukemias with myeloid features also express GATA2. However, the percent of GATA2+ blasts in AML is highly variable. Elevated GATA2 expression in AML blasts correlates with peripheral neutropenia and complex AML cytogenetics but, unlike in MDS, does not predict survival.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Adulto , Humanos , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Médula Ósea/metabolismo , Enfermedad Aguda , Análisis Citogenético
5.
Nat Commun ; 14(1): 7262, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945603

RESUMEN

Transcriptional mechanisms controlling developmental processes establish and maintain proteomic networks, which can govern the levels of intracellular small molecules. Although dynamic changes in bioactive small molecules can link transcription factor and genome activity with cell state transitions, many mechanistic questions are unresolved. Using quantitative lipidomics and multiomics, we discover that the hematopoietic transcription factor GATA1 establishes ceramide homeostasis during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Inhibiting a GATA1-induced sphingolipid biosynthetic enzyme, delta(4)-desaturase, or disrupting ceramide homeostasis with cell-permeable dihydroceramide or ceramide is detrimental to erythroid, but not myeloid, progenitor activity. Coupled with genetic editing-based rewiring of the regulatory circuitry, we demonstrate that ceramide homeostasis commissions vital stem cell factor and erythropoietin signaling by opposing an inhibitory protein phosphatase 2A-dependent, dual-component mechanism. Integrating bioactive lipids as essential components of GATA factor mechanisms to control cell state transitions has implications for diverse cell and tissue types.


Asunto(s)
Citocinas , Redes Reguladoras de Genes , Citocinas/genética , Proteómica , Factor de Transcripción GATA1/metabolismo , Diferenciación Celular/genética , Ceramidas , Homeostasis
6.
J Clin Invest ; 133(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37847561

RESUMEN

We previously demonstrated that a subset of acute myeloid leukemia (AML) patients with concurrent RAS pathway and TP53 mutations have an extremely poor prognosis and that most of these TP53 mutations are missense mutations. Here, we report that, in contrast to the mixed AML and T cell malignancy that developed in NrasG12D/+ p53-/- (NP-/-) mice, NrasG12D/+ p53R172H/+ (NPmut) mice rapidly developed inflammation-associated AML. Under the inflammatory conditions, NPmut hematopoietic stem and progenitor cells (HSPCs) displayed imbalanced myelopoiesis and lymphopoiesis and mostly normal cell proliferation despite MEK/ERK hyperactivation. RNA-Seq analysis revealed that oncogenic NRAS signaling and mutant p53 synergized to establish an NPmut-AML transcriptome distinct from that of NP-/- cells. The NPmut-AML transcriptome showed GATA2 downregulation and elevated the expression of inflammatory genes, including those linked to NF-κB signaling. NF-κB was also upregulated in human NRAS TP53 AML. Exogenous expression of GATA2 in human NPmut KY821 AML cells downregulated inflammatory gene expression. Mouse and human NPmut AML cells were sensitive to MEK and NF-κB inhibition in vitro. The proteasome inhibitor bortezomib stabilized the NF-κB-inhibitory protein IκBα, reduced inflammatory gene expression, and potentiated the survival benefit of a MEK inhibitor in NPmut mice. Our study demonstrates that a p53 structural mutant synergized with oncogenic NRAS to promote AML through mechanisms distinct from p53 loss.


Asunto(s)
Leucemia Mieloide Aguda , FN-kappa B , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Mutación con Ganancia de Función , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mutación , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/genética
7.
Blood Adv ; 7(24): 7564-7575, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37871305

RESUMEN

Germline genetic variants alter the coding and enhancer sequences of GATA2, which encodes a master regulator of hematopoiesis. The conserved murine Gata2 enhancer (+9.5) promotes hematopoietic stem cell (HSC) genesis during embryogenesis. Heterozygosity for a single-nucleotide Ets motif variant in the human enhancer creates a bone marrow failure and acute myeloid leukemia predisposition termed GATA2 deficiency syndrome. The homozygous murine variant attenuates chemotherapy- and transplantation-induced hematopoietic regeneration, hematopoietic stem and progenitor cell (HSPC) response to inflammation, and HSPC mobilization with the therapeutic mobilizer granulocyte colony-stimulating factor (G-CSF). Because a Gata2 +9.5 variant attenuated G-CSF-induced HSPC expansion and mobilization, and HSC transplantation therapies require efficacious mobilization, we tested whether variation affects mechanistically distinct mobilizers or only those operating through select pathways. In addition to affecting G-CSF activity, Gata2 variation compromised IL-8/CXCR2- and VLA-4/VCAM1-induced mobilization. Although the variation did not disrupt HSPC mobilization mediated by plerixafor, which functions through CXCR4/CXCL12, homozygous and heterozygous variation attenuated mobilization efficacy of the clinically used plerixafor/G-CSF combination. The influence of noncoding variation on HSPC mobilization efficacy and function is important clinically because comprehensive noncoding variation is not commonly analyzed in patients. Furthermore, our mobilization-defective system offers unique utility for elucidating fundamental HSPC mechanisms.


Asunto(s)
Factor de Transcripción GATA2 , Trasplante de Células Madre Hematopoyéticas , Compuestos Heterocíclicos , Animales , Ratones , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Variación Genética , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/farmacología , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/metabolismo , Compuestos Heterocíclicos/farmacología
9.
Blood Adv ; 7(17): 4970-4982, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37276450

RESUMEN

Metabolic products of the microbiota can alter hematopoiesis. However, the contribution and site of action of bile acids is poorly understood. Here, we demonstrate that the secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA), increase bone marrow myelopoiesis. Treatment of bone marrow cells with DCA and LCA preferentially expanded immunophenotypic and functional colony-forming unit-granulocyte and macrophage (CFU-GM) granulocyte-monocyte progenitors (GMPs). DCA treatment of sorted hematopoietic stem and progenitor cells (HSPCs) increased CFU-GMs, indicating that direct exposure of HSPCs to DCA sufficed to increase GMPs. The vitamin D receptor (VDR) was required for the DCA-induced increase in CFU-GMs and GMPs. Single-cell RNA sequencing revealed that DCA significantly upregulated genes associated with myeloid differentiation and proliferation in GMPs. The action of DCA on HSPCs to expand GMPs in a VDR-dependent manner suggests microbiome-host interactions could directly affect bone marrow hematopoiesis and potentially the severity of infectious and inflammatory disease.


Asunto(s)
Ácidos y Sales Biliares , Mielopoyesis , Receptores de Calcitriol , Ácidos y Sales Biliares/metabolismo , Células Progenitoras Mieloides , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
10.
Curr Opin Hematol ; 30(4): 117-123, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37254854

RESUMEN

PURPOSE OF REVIEW: Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS: GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY: As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.


Asunto(s)
Deficiencia GATA2 , Humanos , Diferenciación Celular/genética , Factor de Transcripción GATA2/genética , Inmunidad Innata , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interferones/metabolismo , Animales
11.
Public Health ; 218: 12-20, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933354

RESUMEN

INTRODUCTION: The UK shielding policy intended to protect people at the highest risk of harm from COVID-19 infection. We aimed to describe intervention effects in Wales at 1 year. METHODS: Retrospective comparison of linked demographic and clinical data for cohorts comprising people identified for shielding from 23 March to 21 May 2020; and the rest of the population. Health records were extracted with event dates between 23 March 2020 and 22 March 2021 for the comparator cohort and from the date of inclusion until 1 year later for the shielded cohort. RESULTS: The shielded cohort included 117,415 people, with 3,086,385 in the comparator cohort. The largest clinical categories in the shielded cohort were severe respiratory condition (35.5%), immunosuppressive therapy (25.9%) and cancer (18.6%). People in the shielded cohort were more likely to be female, aged ≥50 years, living in relatively deprived areas, care home residents and frail. The proportion of people tested for COVID-19 was higher in the shielded cohort (odds ratio [OR] 1.616; 95% confidence interval [CI] 1.597-1.637), with lower positivity rate incident rate ratios 0.716 (95% CI 0.697-0.736). The known infection rate was higher in the shielded cohort (5.9% vs 5.7%). People in the shielded cohort were more likely to die (OR 3.683; 95% CI: 3.583-3.786), have a critical care admission (OR 3.339; 95% CI: 3.111-3.583), hospital emergency admission (OR 2.883; 95% CI: 2.837-2.930), emergency department attendance (OR 1.893; 95% CI: 1.867-1.919) and common mental disorder (OR 1.762; 95% CI: 1.735-1.789). CONCLUSION: Deaths and healthcare utilisation were higher amongst shielded people than the general population, as would be expected in the sicker population. Differences in testing rates, deprivation and pre-existing health are potential confounders; however, lack of clear impact on infection rates raises questions about the success of shielding and indicates that further research is required to fully evaluate this national policy intervention.


Asunto(s)
COVID-19 , Humanos , Femenino , Masculino , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Retrospectivos , Gales/epidemiología , Pandemias/prevención & control , Salud Pública , Web Semántica , Política Pública
12.
iScience ; 26(4): 106297, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950124

RESUMEN

Innate immune signaling protects against pathogens, controls hematopoietic development, and functions in oncogenesis, yet the relationship between these mechanisms is undefined. Downregulating the GATA2 transcription factor in fetal hematopoietic progenitor cells upregulates genes encoding innate immune regulators, increases Interferon-γ (IFNγ) signaling, and disrupts differentiation. We demonstrate that deletion of an enhancer that confers GATA2 expression in fetal progenitors elevated Toll-like receptor (TLR) TLR1/2 and TLR2/6 expression and signaling. Rescue by expressing GATA2 downregulated elevated TLR signaling. IFNγ amplified TLR1/2 and TLR2/6 signaling in GATA2-deficient progenitors, synergistically activating cytokine/chemokine genes and elevating cytokine/chemokine production in myeloid cell progeny. Genomic analysis of how innate immune signaling remodels the GATA2-deficient progenitor transcriptome revealed hypersensitive responses at innate immune genes harboring motifs for signal-dependent transcription factors and factors not linked to these mechanisms. As GATA2 establishes a transcriptome that constrains innate immune signaling, insufficient GATA2 renders fetal progenitor cells hypersensitive to innate immune signaling.

13.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36809258

RESUMEN

Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.


Asunto(s)
Deficiencia GATA2 , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Deficiencia GATA2/genética , Interleucina-6/genética , Hematopoyesis/genética , Expresión Génica , Dedos de Zinc/genética , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo
14.
Exp Hematol ; 118: 21-30, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481429

RESUMEN

Although establishment and maintenance of mitochondria are essential for the production of massive amounts of heme in erythroblasts, mitochondria must be degraded upon terminal differentiation to red blood cells (RBCs), thus creating a biphasic regulatory process. Previously, we reported that iron deficiency in mice promotes mitochondrial retention in RBCs, suggesting that a proper amount of iron and/or heme is necessary for the degradation of mitochondria during erythroblast maturation. Because the transcription factor GATA1 regulates autophagy in erythroid cells, which involves mitochondrial clearance (mitophagy), we investigated the relationship between iron or heme and mitophagy by analyzing the expression of genes related to GATA1 and autophagy and the impact of iron or heme restriction on the amount of mitochondria. We found that heme promotes the expression of GATA1-regulated mitophagy-related genes and the induction of mitophagy. GATA1 might induce the expression of the autophagy-related genes Atg4d and Stk11 for mitophagy through a heme-dependent mechanism in murine erythroleukemia (MEL) cells and a genetic rescue system with G1E-ER-GATA1 erythroblast cells derived from Gata1-null murine embryonic stem cells. These results provide evidence for a biphasic mechanism in which mitochondria are essential for heme generation, and the heme generated during differentiation promotes mitophagy and mitochondrial disposal. This mechanism provides a molecular framework for understanding this fundamentally important cell biological process.


Asunto(s)
Hemo , Mitofagia , Ratones , Animales , Hemo/metabolismo , Diferenciación Celular , Células Eritroides/metabolismo , Hierro/metabolismo
15.
Blood Adv ; 7(4): 586-601, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36161469

RESUMEN

The RNA-regulatory exosome complex (EC) posttranscriptionally and cotranscriptionally processes and degrades RNAs in a context-dependent manner. Although the EC functions in diverse cell types, its contributions to stem and progenitor cell development are not well understood. Previously, we demonstrated that the transcriptional regulator of erythrocyte development, GATA1, represses EC subunit genes, and the EC maintains erythroid progenitors in vitro. To determine if this mechanism operates in vivo, we used the hematopoietic-specific Vav1-Cre and "conditional by inversion" mouse system to ablate Exosc3, encoding an EC structural subunit. Although Exosc3C/C Cre+ embryos developed normally until embryonic day 14.5, Exosc3 ablation was embryonic lethal and severely reduced erythromyeloid progenitor activity. RNA sequencing analysis of Exosc3-ablated burst-forming unit-erythroid revealed elevated transcripts encoding multiple proapoptotic factors, and the mutant erythroid progenitors exhibited increased apoptosis. We propose that the EC controls an ensemble of apoptosis-regulatory RNAs, thereby promoting erythroid progenitor survival and developmental erythropoiesis in vivo.


Asunto(s)
Células Precursoras Eritroides , Exosomas , Ratones , Animales , Complejo Multienzimático de Ribonucleasas del Exosoma , Apoptosis , ARN
17.
J Breast Imaging ; 5(1): 73-79, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38416956

RESUMEN

Breast cancer incidence among transgender and nonbinary (TGNB) individuals is not well characterized owing to the absence of robust data collection among this patient population. Consequently, breast cancer risks are largely unknown, and screening guidelines are not based on robust evidence. Additionally, TGNB patients experience barriers to access health care. A first step in improving data collection, research, and ultimately care of TGNB individuals is the identification of group members and demonstration to patients that our breast imaging centers are champions of LGBTQ+ health. At our institution, patients who present for breast imaging complete an iPad-administered breast imaging history and breast cancer risk assessment survey. Using the modified Tyrer-Cuzick model, the lifetime risk of developing breast cancer is estimated, and additional key history that may impact breast care and future breast imaging is collected. Under the previous clinic workflow, patients are identified as either "male" or "female" and complete a corresponding gender-specific survey. To improve care, we revised the survey using gender-inclusive language and developed four versions to allow patients to separately self-report their sex assigned at birth and gender identity. Relevant queries relating to hormone use and gender-affirming chest/breast surgery that are concordant with six gender-identity groups were added. Long-term collection of these inclusive data by imaging centers has the potential to enhance the data set available to improve breast care and better understand breast cancer risk and outcomes among TGNB populations.


Asunto(s)
Neoplasias de la Mama , Personas Transgénero , Transexualidad , Recién Nacido , Humanos , Masculino , Femenino , Identidad de Género , Neoplasias de la Mama/diagnóstico , Encuestas y Cuestionarios
18.
Int J Hematol ; 116(2): 174-181, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35776402

RESUMEN

The hematopoietic transcription factor GATA1 induces heme accumulation during erythropoiesis by directly activating genes mediating heme biosynthesis. In addition to its canonical functions as a hemoglobin prosthetic group and enzyme cofactor, heme regulates gene expression in erythroid cells both transcriptionally and post-transcriptionally. Heme binding to the transcriptional repressor BACH1 triggers its proteolytic degradation. In heme-deficient cells, BACH1 accumulates and represses transcription of target genes, including α- and ß-like globin genes, preventing the accumulation of cytotoxic free globin chains. A recently described BACH1-independent mechanism of heme-dependent transcriptional regulation is associated with a DNA motif termed heme-regulated motif (HERM), which resides at the majority of loci harboring heme-regulated chromatin accessibility sites. Progress on these problems has led to a paradigm in which cell type-specific transcriptional mechanisms determine the expression of enzymes mediating the synthesis of small molecules, which generate feedback loops, converging upon the transcription factor itself and the genome. This marriage between transcription factors and the small molecules that they control is predicted to be a canonical attribute of regulatory networks governing cell state transitions such as differentiation in the hematopoietic system and more broadly.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Hemo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Eritroides , Globinas/metabolismo , Humanos , Factores de Transcripción/metabolismo
19.
Blood Adv ; 6(5): 1464-1473, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35008108

RESUMEN

Cell type-specific transcription factors control stem and progenitor cell transitions by establishing networks containing hundreds of genes and proteins. Network complexity renders it challenging to discover essential versus modulatory or redundant components. This scenario is exemplified by GATA2 regulation of hematopoiesis during embryogenesis. Loss of a far upstream Gata2 enhancer (-77) disrupts the GATA2-dependent transcriptome governing hematopoietic progenitor cell differentiation. The aberrant transcriptome includes the transcription factor interferon regulatory factor 8 (IRF8) and a host of innate immune regulators. Mutant progenitors lose the capacity to balance production of diverse hematopoietic progeny. To elucidate mechanisms, we asked if IRF8 is essential, contributory, or not required. Reducing Irf8, in the context of the -77 mutant allele, reversed granulocytic deficiencies and the excessive accumulation of dendritic cell committed progenitors. Despite many dysregulated components that control vital transcriptional, signaling, and immune processes, the aberrant elevation of a single transcription factor deconstructed the differentiation program.


Asunto(s)
Deficiencia GATA2 , Diferenciación Celular/genética , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Hematopoyesis/genética , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo
20.
Blood Adv ; 6(4): 1095-1099, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34516632

RESUMEN

Mammalian GATA2 gene encodes a dual zinc finger transcription factor, which is essential for hematopoietic stem cell (HSC) generation in the aorta, gonad, mesonephros (AGM) region, HSC self-renewal, and specification of progenitor cell fates. Previously, we demonstrated that Gata2 expression in AGM is controlled by its intronic +9.5 enhancer. Gata2 +9.5 deficiency removes the E-box motif and the GATA site and depletes fetal liver HSCs. However, whether this enhancer has an essential role in regulating adult hematopoiesis has not been established. Here, we evaluate Gata2 +9.5 enhancer function in adult hematopoiesis. +9.5+/- bone marrow cells displayed reduced T cell reconstitution in a competitive transplant assay. Donor-derived analysis demonstrated a previously unrecognized function of the +9.5 enhancer in T cell development at the lymphoid-primed multipotent progenitor stage. Moreover, +9.5+/- adult HSCs displayed increased apoptosis and reduced long-term self-renewal capability in comparison with wild-type (WT) HSCs. These phenotypes were more moderate than those of Gata2+/- HSCs. Consistent with the phenotypic characterization, Gata2 expression in +9.5+/- LSKs was moderately higher than that in Gata2+/- LSKs, but lower than that in WT LSKs. Our data suggest that +9.5 deficiency compromises, without completely abrogating, Gata2 expression in adult HSCs.


Asunto(s)
Hematopoyesis , Mesonefro , Animales , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA