Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Sensors (Basel) ; 24(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257668

RESUMEN

Implantable cell replacement therapies promise to completely restore the function of neural structures, possibly changing how we currently perceive the onset of neurodegenerative diseases. One of the major clinical hurdles for the routine implementation of stem cell therapies is poor cell retention and survival, demanding the need to better understand these mechanisms while providing precise and scalable approaches to monitor these cell-based therapies in both pre-clinical and clinical scenarios. This poses significant multidisciplinary challenges regarding planning, defining the methodology and requirements, prototyping and different stages of testing. Aiming toward an optogenetic neural stem cell implant controlled by a smart wireless electronic frontend, we show how an iterative development methodology coupled with a modular design philosophy can mitigate some of these challenges. In this study, we present a miniaturized, wireless-controlled, modular multisensor platform with fully interfaced electronics featuring three different modules: an impedance analyzer, a potentiostat and an optical stimulator. We show the application of the platform for electrical impedance spectroscopy-based cell monitoring, optical stimulation to induce dopamine release from optogenetically modified neurons and a potentiostat for cyclic voltammetry and amperometric detection of dopamine release. The multisensor platform is designed to be used as an opto-electric headstage for future in vivo animal experiments.


Asunto(s)
Experimentación Animal , Dopamina , Animales , Optogenética , Encéfalo , Prótesis e Implantes
2.
J Vis Exp ; (195)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37212554

RESUMEN

The embedded 3D printing of cells inside a granular support medium has emerged in the past decade as a powerful approach for the freeform biofabrication of soft tissue constructs. However, granular gel formulations have been restricted to a limited number of biomaterials that allow for the cost-effective generation of large amounts of hydrogel microparticles. Therefore, granular gel support media have generally lacked the cell-adhesive and cell-instructive functions found in the native extracellular matrix (ECM). To address this, a methodology has been developed for the generation of self-healing annealable particle-extracellular matrix (SHAPE) composites. SHAPE composites consist of a granular phase (microgels) and a continuous phase (viscous ECM solution) that, together, allow for both programmable high-fidelity printing and an adjustable biofunctional extracellular environment. This work describes how the developed methodology can be utilized for the precise biofabrication of human neural constructs. First, alginate microparticles, which serve as the granular component in the SHAPE composites, are fabricated and combined with a collagen-based continuous component. Then, human neural stem cells are printed inside the support material, followed by the annealing of the support. The printed constructs can be maintained for weeks to allow the differentiation of the printed cells into neurons. Simultaneously, the collagen continuous phase allows for axonal outgrowth and the interconnection of regions. Finally, this works provides information on how to perform live-cell fluorescence imaging and immunocytochemistry to characterize the 3D-printed human neural constructs.


Asunto(s)
Bioimpresión , Microgeles , Humanos , Microgeles/análisis , Ingeniería de Tejidos/métodos , Matriz Extracelular/química , Materiales Biocompatibles/química , Hidrogeles/química , Impresión Tridimensional , Andamios del Tejido/química , Bioimpresión/métodos
3.
Bioelectrochemistry ; 149: 108306, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36345111

RESUMEN

The pathophysiological progress of Parkinson's disease leads through degeneration of dopaminergic neurons in the substantia nigra to complete cell death and lack of dopamine in the striatum where it modulates motor functions. Transplantation of dopaminergic stem cell-derived neurons is a possible therapy to restore dopamine levels. We have previously presented multifunctional pyrolytic carbon coated leaky optoelectrical fibers (LOEFs) with laser ablated micro-optical windows (µOWs) as carriers for channelrhodopsin-2 modified optogenetically active neurons for light-induced on-demand dopamine release and amperometric real-time detection. To increase the dopamine release by stimulating a larger neuronal population with light, we present here a novel approach to generate µOWs through laser ablation around the entire circumference of optical fibers to obtain Omni-LOEFs. Cyclic voltammetric characterization of the pyrolytic carbon showed that despite the increased number of µOWs, the electrochemical properties were not deteriorated. Finally, we demonstrate that the current recorded during real-time detection of dopamine upon light-induced stimulation of neurons differentiated on Omni-LOEFs is significantly higher compared to recordings from the same number of cells seeded on LOEFs with µOWs only on one side. Moreover, by varying the cell seeding density, we show that the recorded current is proportional to the dimension of the cell population.


Asunto(s)
Dopamina , Optogenética , Neuronas/fisiología , Carbono/metabolismo
4.
Adv Sci (Weinh) ; 9(25): e2201392, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35712780

RESUMEN

Human in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials. Therefore, there has been a need for novel materials that take advantage of versatile biomimicry of bulk hydrogels while providing high-fidelity support for embedded printing akin to granular gels. To address this need, Authors present a modular platform for bioengineering of neuronal networks via direct embedded 3D printing of human stem cells inside Self-Healing Annealable Particle-Extracellular matrix (SHAPE) composites. SHAPE composites consist of soft microgels immersed in viscous extracellular-matrix solution to enable precise and programmable patterning of human stem cells and consequent generation mature subtype-specific neurons that extend projections into the volume of the annealed support. The developed approach further allows multi-ink deposition, live spatial and temporal monitoring of oxygen levels, as well as creation of vascular-like channels. Due to its modularity and versatility, SHAPE biomanufacturing toolbox has potential to be used in applications beyond functional modeling of mechanically sensitive neural constructs.


Asunto(s)
Microgeles , Tejido Nervioso , Humanos , Hidrogeles , Impresión Tridimensional , Andamios del Tejido
6.
Nat Commun ; 12(1): 7302, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911939

RESUMEN

Three-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain. However, despite significant advancements in the field, the use of brain organoids can be limited by issues of reproducibility and incomplete maturation which was also observed in this study. We therefore designed bioengineered ventral midbrain organoids supported by recombinant spider-silk microfibers functionalized with full-length human laminin. We show that silk organoids reproduce key molecular aspects of dopamine neurogenesis and reduce inter-organoid variability in terms of cell type composition and dopamine neuron formation.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo , Organoides/crecimiento & desarrollo , Encéfalo/citología , Humanos , Neurogénesis , Neuronas/citología , Organoides/citología , Organoides/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma
7.
Chemosphere ; 284: 131225, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34182286

RESUMEN

Conazole fungicides such as epoxiconazole are mostly used on cereals of crops to inhibit fungal growth through direct inhibition of sterol 14α-demethylase (CYP51A1). However, this enzyme is highly conserved and in humans it is part of the steroid hormone biosynthesis pathway. Endocrine disrupting effects of epoxiconazole have been shown in rodents and have been substantiated by in vitro data, however, the underlying molecular mechanisms are not clear. We took advantage of a human stem cell based in vitro model for developmental toxicity to study the molecular effects of epoxiconazole. This model is based on 3D cultures of embryoid bodies and differentiation into cardiomyocytes, which mimics the early stages of embryonic development. We have previously shown that epoxiconazole impairs differentiation of these embryoid bodies and therefore has the potential to affect human embryonic development. We employed global transcriptome analysis using RNA sequencing and found that the steroid biosynthesis pathway including CYP51A1, the human sterol 14α-demethylase, was highly deregulated by epoxiconazole in our model. We confirmed that most genes of the steroid biosynthesis pathway were upregulated, including CYP51A1, suggesting a compensatory mechanism at the gene expression level. Our data suggest that epoxiconazole acts mainly by decreasing cholesterol biosynthesis in the cells. We conclude that epoxiconazole bears the potential to harm human embryonic development through inhibition of the steroid biosynthesis pathway. As this may be a common feature of compounds that target sterol 14α-demethylase, we add evidence to the assumption that conazole fungicides may be human developmental toxicants.


Asunto(s)
Fungicidas Industriales , Transcriptoma , Compuestos Epoxi/toxicidad , Femenino , Fungicidas Industriales/toxicidad , Humanos , Embarazo , Células Madre , Triazoles/toxicidad
9.
Micromachines (Basel) ; 12(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067628

RESUMEN

Pyrolytic carbon microelectrodes (PCMEs) are a promising alternative to their conventional metallic counterparts for various applications. Thus, methods for the simple and inexpensive patterning of PCMEs are highly sought after. Here, we demonstrate the fabrication of PCMEs through the selective pyrolysis of SU-8 photoresist by irradiation with a low-power, 806 nm, continuous wave, semiconductor-diode laser. The SU-8 was modified by adding Pro-Jet 800NP (FujiFilm) in order to ensure absorbance in the 800 nm range. The SU-8 precursor with absorber was successfully converted into pyrolytic carbon upon laser irradiation, which was not possible without an absorber. We demonstrated that the local laser pyrolysis (LLP) process in an inert nitrogen atmosphere with higher laser power and lower scan speed resulted in higher electrical conductance. The maximum conductivity achieved for a laser-pyrolyzed line was 14.2 ± 3.3 S/cm, with a line width and thickness of 28.3 ± 2.9 µm and 6.0 ± 1.0 µm, respectively, while the narrowest conductive line was just 13.5 ± 0.4 µm wide and 4.9 ± 0.5 µm thick. The LLP process seemed to be self-limiting, as multiple repetitive laser scans did not alter the properties of the carbonized lines. The direct laser writing of adjacent lines with an insulating gap down to ≤5 µm was achieved. Finally, multiple lines were seamlessly joined and intersected, enabling the writing of more complex designs with branching electrodes and the porosity of the carbon lines could be controlled by the scan speed.

10.
Neurochem Int ; 147: 105043, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33887378

RESUMEN

Inherent limitations of the traditional approaches to study brain function and disease, such as rodent models and 2D cell culture platforms, have led to the development of 3D in vitro cell culture systems. These systems, products of multidisciplinary efforts encompassing stem cell biology, materials engineering, and biofabrication, have quickly shown great potential to mimic biochemical composition, structural properties, and cellular morphology and diversity found in the native brain tissue. Crucial to these developments have been the advancements in stem cell technology and cell reprogramming protocols that allow reproducible generation of human subtype-specific neurons and glia in laboratory conditions. At the same time, biomaterials have been designed to provide cells in 3D with a microenvironment that mimics functional and structural aspects of the native extracellular matrix with increasing fidelity. In this article, we review the use of biomaterials in 3D in vitro models of neurological disorders with focus on hydrogel technology and with biochemical composition and physical properties of the in vivo environment as reference.


Asunto(s)
Materiales Biocompatibles , Encefalopatías/tratamiento farmacológico , Técnicas de Cultivo Tridimensional de Células , Matriz Extracelular/metabolismo , Animales , Materiales Biocompatibles/análisis , Materiales Biocompatibles/química , Técnicas de Cultivo de Célula/métodos , Humanos , Hidrogeles/análisis , Hidrogeles/química
11.
Arch Toxicol ; 95(5): 1659-1670, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33660062

RESUMEN

To test large numbers of chemicals for developmental toxicity, rapid in vitro tests with standardized readouts for automated data acquisition are needed. However, the most widely used assay, the embryonic stem cell test, relies on the counting of beating embryoid bodies by visual inspection, which is laborious and time consuming. We previously developed the PluriBeat assay based on differentiation of human induced pluripotent stem cells (hiPSC) that we demonstrated to be predictive for known teratogens at relevant concentrations using the readout of beating cardiomyocytes. Here, we report the development of a novel assay, which we term the PluriLum assay, where we have introduced a luciferase reporter gene into the locus of NKX2.5 of our hiPSC line. This enabled us to measure luminescence intensities instead of counting beating cardiomyocytes, which is less labor intensive. We established two NKX2.5 reporter cell lines and validated their pluripotency and genetic stability. Moreover, we confirmed that the genetically engineered NKX2.5 reporter cell line differentiated into cardiomyocytes with the same efficiency as the original wild-type line. We then exposed the cells to valproic acid (25-300 µM) and thalidomide (0.1-36 µM) and compared the PluriBeat readout of the cardiomyocytes with the luminescence intensity of the PluriLum assay. The results showed that thalidomide decreased luminescence intensity significantly with a higher potency and efficacy compared to the beating readout. With this, we have developed a novel hiPSC-based assay with a standardized readout that may have the potential for higher throughput screening for developmental toxicity.


Asunto(s)
Pruebas de Toxicidad/métodos , Diferenciación Celular , Línea Celular , Células Cultivadas , Células Madre Embrionarias , Genes Reporteros , Humanos , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Teratógenos
12.
Biofabrication ; 13(1): 011001, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724233

RESUMEN

Brain organoids are considered to be a highly promising in vitro model for the study of the human brain and, despite their various shortcomings, have already been used widely in neurobiological studies. Especially for drug screening applications, a highly reproducible protocol with simple tissue culture steps and consistent output, is required. Here we present an engineering approach that addresses several existing shortcomings of brain organoids. By culturing brain organoids with a polycaprolactone scaffold, we were able to modify their shape into a flat morphology. Engineered flat brain organoids (efBOs) possess advantageous diffusion conditions and thus their tissue is better supplied with oxygen and nutrients, preventing the formation of a necrotic tissue core. Moreover, the efBO protocol is highly simplified and allows to customize the organoid size directly from the start. By seeding cells onto 12 by 12 mm scaffolds, the brain organoid size can be significantly increased. In addition, we were able to observe folding reminiscent of gyrification around day 20, which was self-generated by the tissue. To our knowledge, this is the first study that reports intrinsically caused gyrification of neuronal tissue in vitro. We consider our efBO protocol as a next step towards the generation of a stable and reliable human brain model for drug screening applications and spatial patterning experiments.


Asunto(s)
Encéfalo , Organoides , Evaluación Preclínica de Medicamentos , Humanos , Oxígeno , Ingeniería de Tejidos
13.
PLoS One ; 16(1): e0245685, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33507989

RESUMEN

Human brain tissue models such as cerebral organoids are essential tools for developmental and biomedical research. Current methods to generate cerebral organoids often utilize Matrigel as an external scaffold to provide structure and biologically relevant signals. Matrigel however is a nonspecific hydrogel of mouse tumor origin and does not represent the complexity of the brain protein environment. In this study, we investigated the application of a decellularized adult porcine brain extracellular matrix (B-ECM) which could be processed into a hydrogel (B-ECM hydrogel) to be used as a scaffold for human embryonic stem cell (hESC)-derived brain organoids. We decellularized pig brains with a novel detergent- and enzyme-based method and analyzed the biomaterial properties, including protein composition and content, DNA content, mechanical characteristics, surface structure, and antigen presence. Then, we compared the growth of human brain organoid models with the B-ECM hydrogel or Matrigel controls in vitro. We found that the native brain source material was successfully decellularized with little remaining DNA content, while Mass Spectrometry (MS) showed the loss of several brain-specific proteins, while mainly different collagen types remained in the B-ECM. Rheological results revealed stable hydrogel formation, starting from B-ECM hydrogel concentrations of 5 mg/mL. hESCs cultured in B-ECM hydrogels showed gene expression and differentiation outcomes similar to those grown in Matrigel. These results indicate that B-ECM hydrogels can be used as an alternative scaffold for human cerebral organoid formation, and may be further optimized for improved organoid growth by further improving protein retention other than collagen after decellularization.


Asunto(s)
Química Encefálica , Encéfalo/metabolismo , Matriz Extracelular/química , Células Madre Embrionarias Humanas/metabolismo , Hidrogeles/química , Organoides/metabolismo , Animales , Encéfalo/citología , Línea Celular , Células Madre Embrionarias Humanas/citología , Humanos , Organoides/citología , Porcinos
14.
ACS Appl Mater Interfaces ; 13(3): 3591-3604, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33438397

RESUMEN

A reversible switchable on-demand UV-triggered drug delivery system (DDS) based on interpenetrating polymer networks (IPNs) with silicone as the host polymer and spiropyran (SP)-functionalized guest polymer is designed and demonstrated. The photo-responsive IPNs provide a new triggered drug delivery concept as they exploit the change in intermolecular interactions (work of adhesion) among the drug, matrix, and solvent when the incorporated hydrophobic SP moieties transform into the hydrophilic merocyanine form upon light irradiation without degradation and disruption of the DDS. The change in how the copolymer composition (hydrophilicity and content) and the lipophilicity of the drug (log P) affect the release profile was investigated. A thermodynamic model, based on Hansen solubility parameters, was developed to design and optimize the polymer composition of the IPNs to obtain the most efficient light-triggered drug release and suppression of the premature release. The developed IPNs showed excellent result for dopamine, l-dopa, and prednisone with around 90-95% light-triggered release. The model was applied to study the release behavior of drugs with different log P and to estimate if the light-induced hydrophobic-to-hydrophilic switch can overcome the work of adhesion between polymers and drugs and hence the desorption and release of the drugs. To the best of our knowledge, this is the first time that work of adhesion is used for this aim. Comparing the result obtained from the model and experiment shows that the model is useful for evaluating and estimating the release behavior of specific drugs merocyanine, IPN, DDS, and spiropyran.


Asunto(s)
Benzopiranos/química , Preparaciones de Acción Retardada/química , Indoles/química , Nitrocompuestos/química , Polímeros/química , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Dopamina/administración & dosificación , Dopamina/química , Dopaminérgicos/administración & dosificación , Dopaminérgicos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/efectos de la radiación , Interacciones Hidrofóbicas e Hidrofílicas , Levodopa/administración & dosificación , Levodopa/química , Prednisona/administración & dosificación , Prednisona/química , Rayos Ultravioleta
15.
ACS Appl Bio Mater ; 4(2): 1624-1631, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35014511

RESUMEN

A photoresponsive molecular-gated drug delivery system (DDS) based on silicone-hydrogel (poly(HEMA-co-PEGMEA)) interpenetrating polymer networks (IPNs) functionalized with carboxylated spiropyran (SPCOOH) was designed and demonstrated as an on-demand DDS. The triggered-release mechanism relies on controlling the wetting behavior of the surface by light, exploiting different hydrophobicities between the "closed" and "open" isomers of spiropyran as a photoswitchable molecular gate on the surface of IPN (SP-photogated IPN). Light-triggered release of doxycycline (DOX) as a model drug indicated that the spiropyran (SP) molecules provide a hydrophobic layer around the drug carrier and have a good gate-closing efficiency for IPNs with 20-30% hydrogel content. Upon UV light irradiation, SP converts into an open hydrophilic merocyanine state, which triggers the release of DOX. These results were compared with a previously developed SP-bulk modified IPN using the same hydrogel as a control, proving the efficiency of the gated IPN system. The covalent attachment of SPCOOH to the alcohol groups of the hydrogel and the structural change caused by UV light was indicated with FTIR analysis. XPS results also confirm the presence of SP by indicating the atomic percentage of nitrogen with respect to the hydrogel content.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Humanos
16.
Acta Biomater ; 121: 250-262, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33242639

RESUMEN

Protection or repair of the nigrostriatal pathway represents a principal disease-modifying therapeutic strategy for Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) holds great therapeutic potential for PD, but its efficacious delivery remains difficult. The aim of this study was to evaluate the potential of different biomaterials (hydrogels, microspheres, cryogels and microcontact printed surfaces) for reconstructing the nigrostriatal pathway in organotypic co-culture of ventral mesencephalon and dorsal striatum. The biomaterials (either alone or loaded with GDNF) were locally applied onto the brain co-slices and fiber growth between the co-slices was evaluated after three weeks in culture based on staining for tyrosine hydroxylase (TH). Collagen hydrogels loaded with GDNF slightly promoted the TH+ nerve fiber growth towards the dorsal striatum, while GDNF loaded microspheres embedded within the hydrogels did not provide an improvement. Cryogels alone or loaded with GDNF also enhanced TH+ fiber growth. Lines of GDNF immobilized onto the membrane inserts via microcontact printing also significantly improved TH+ fiber growth. In conclusion, this study shows that various biomaterials and tissue engineering techniques can be employed to regenerate the nigrostriatal pathway in organotypic brain slices. This comparison of techniques highlights the relative merits of different technologies that researchers can use/develop for neuronal regeneration strategies.


Asunto(s)
Materiales Biocompatibles , Sustancia Negra , Animales , Técnicas de Cocultivo , Cuerpo Estriado/metabolismo , Dopamina , Mesencéfalo/metabolismo , Ratones Endogámicos C57BL , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
17.
Adv Healthc Mater ; 9(20): e2001108, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32902188

RESUMEN

Advancements in research on the interaction of human neural stem cells (hNSCs) with nanotopographies and biomaterials are enhancing the ability to influence cell migration, proliferation, gene expression, and tailored differentiation toward desired phenotypes. Here, the fabrication of pyrolytic carbon nanograss (CNG) nanotopographies is reported and demonstrated that these can be employed as cell substrates boosting hNSCs differentiation into dopaminergic neurons (DAn), a long-time pursued goal in regenerative medicine based on cell replacement. In the near future, such structures can play a crucial role in the near future for stem-cell based cell replacement therapy (CRT) and bio-implants for Parkinson's disease (PD). The unique combination of randomly distributed nanograss topographies and biocompatible pyrolytic carbon material is optimized to provide suitable mechano-material cues for hNSCs adhesion, division, and DAn differentiation of midbrain hNSCs. The results show that in the presence of the biocoating poly-L-lysine (PLL), the CNG enhances hNSCs neurogenesis up to 2.3-fold and DAn differentiation up to 3.5-fold. Moreover, for the first time, consistent evidence is provided, that CNGs without any PLL coating are not only supporting cell survival but also lead to significantly enhanced neurogenesis and promote hNSCs to acquire dopaminergic phenotype compared to PLL coated topographies.


Asunto(s)
Células-Madre Neurales , Carbono , Diferenciación Celular , Humanos , Mesencéfalo , Neurogénesis
18.
Adv Sci (Weinh) ; 7(16): 2001150, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32832365

RESUMEN

Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.

19.
Arch Toxicol ; 94(11): 3831-3846, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32700165

RESUMEN

There is a great need for novel in vitro methods to predict human developmental toxicity to comply with the 3R principles and to improve human safety. Human-induced pluripotent stem cells (hiPSC) are ideal for the development of such methods, because they are easy to retrieve by conversion of adult somatic cells and can differentiate into most cell types of the body. Advanced three-dimensional (3D) cultures of these cells, so-called embryoid bodies (EBs), moreover mimic the early developing embryo. We took advantage of this to develop a novel human toxicity assay to predict chemically induced developmental toxicity, which we termed the PluriBeat assay. We employed three different hiPSC lines from male and female donors and a robust microtiter plate-based method to produce EBs. We differentiated the cells into cardiomyocytes and introduced a scoring system for a quantitative readout of the assay-cardiomyocyte contractions in the EBs observed on day 7. Finally, we tested the three compounds thalidomide (2.3-36 µM), valproic acid (25-300 µM), and epoxiconazole (1.3-20 µM) on beating and size of the EBs. We were able to detect the human-specific teratogenicity of thalidomide and found the rodent toxicant epoxiconazole as more potent than thalidomide in our assay. We conclude that the PluriBeat assay is a novel method for predicting chemicals' adverse effects on embryonic development.


Asunto(s)
Bioensayo/métodos , Cuerpos Embrioides/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Teratógenos/toxicidad , Pruebas de Toxicidad/métodos , Línea Celular , Biología Evolutiva , Cuerpos Embrioides/fisiología , Compuestos Epoxi/toxicidad , Femenino , Humanos , Masculino , Miocitos Cardíacos/fisiología , Oxazinas/metabolismo , Células Madre Pluripotentes/fisiología , Teratogénesis , Talidomida/toxicidad , Triazoles/toxicidad , Ácido Valproico/toxicidad , Xantenos/metabolismo
20.
Anal Bioanal Chem ; 412(24): 6371-6380, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32451643

RESUMEN

Evaluation and understanding the effect of drug delivery in in vitro systems is fundamental in drug discovery. We present an assay based on real-time electrical impedance spectroscopy (EIS) measurements that can be used to follow the internalisation and cytotoxic effect of a matrix metalloproteinase (MMP)-sensitive liposome formulation loaded with oxaliplatin (OxPt) on colorectal cancer cells. The EIS response identified two different cellular processes: (i) a negative peak in the cell index (CI) within the first 5 h, due to onset of liposome endocytosis, followed by (ii) a subsequent CI increase, due to the reattachment of cells until the onset of cytotoxicity with a decrease in CI. Free OxPt or OxPt-loaded Stealth liposomes did not show this two-stage EIS response; the latter can be due to the fact that Stealth cannot be cleaved by MMPs and thus is not taken up by the cells. Real-time bright-field imaging supported the EIS data, showing variations in cell adherence and cell morphology after exposure to the different liposome formulations. A drastic decrease in cell coverage as well as rounding up of cells during the first 5 h of exposure to OxPt-loaded (MMP)-sensitive liposome formulation is reflected by the first negative EIS response, which indicates the onset of liposome endocytosis. Graphical abstract.


Asunto(s)
Antineoplásicos/administración & dosificación , Endocitosis , Liposomas , Oxaliplatino/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Espectroscopía Dieléctrica , Humanos , Oxaliplatino/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA