Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Phys Chem A ; 125(4): 903-919, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33470828

RESUMEN

Efficient charge-transfer (CT) phosphorescence in the near-IR (NIR) spectral region is reported for four substituted Ru-(R-dipyrrinato) complexes, [Ru(bpy)2(R-dipy)](PF6), where bpy is 2,2'-bipyridine and the substituent R is phenyl (ph), 2,4,6-trimethylphenyl, 4-carboxyphenyl (HOOC-ph), or 4-pyridinyl. The experimentally determined phosphorescence efficiency, ιem(p) = kRAD(p)/(νem(p))3 (where kRAD(p) and νem(p) are the phosphorescence rate constant and the phosphorescence frequency, respectively), of the [Ru(bpy)2(R-dipy)]+ complexes was approximately double that of [Ru(bpy)(Am)4]2+ complexes (Am = ammine ligand) in the NIR region. Density functional theory (DFT) modeling indicated two strikingly different electronic configurations of the triplet emitting state (Te) in the two types of complexes. The Te of [Ru(bpy)2(R-dipy)]+ complexes shows a CT-type corresponding to the metal-to-ligand charge transfer (MLCT)-(Ru-(R-dipy)) and the ππ*-(R-dipy) moiety configurations, and the Te state in the [Ru(bpy)(Am)4]2+ complexes corresponds to an approximately MLCT excited state consisting of mostly MLCT-(Ru-bpy) with a minimal ππ*(bpy) contribution. DFT modeling also indicated that the low-energy singlet excited states in the Te geometry (Sn(T)) of the [Ru(bpy)2(ph-dipy)]+ complex consist of numerous CT-Sn(T)-type states of the Ru-dipy and Ru-bpy moieties, whereas the [Ru(bpy)(Am)4]2+ ions show quite simple MLCT-Sn(T)-type states of the Ru-bpy moiety. Based on experimental observations, DFT modeling, and the plain spin-orbit coupling (SOC) principle, we conclude that the remarkably high ιem(p) amplitudes of the [Ru(bpy)2(R-dipy)]+ complexes relative to those of [Ru(bpy)(Am)4]2+ complexes can be attributed to the relatively substantial contribution of intrinsic SOC-mediated intensity stealing from the numerous low-energy CT-type Sn(T) states.

2.
J Phys Chem A ; 123(44): 9431-9449, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31557033

RESUMEN

The 77 K emission spectra of cyclometalated ruthenium(II)-2,2'-bipyridine (CM-Ru-bpy) chromophores are very similar to those of related Ru-bpy complexes with am(m)ine or diimmine ancillary ligands, and density functional theory (DFT) modeling confirms that the lowest energy triplet metal to ligand charge transfer (3MLCT) excited states of CM-Ru-bpy and related Ru-bpy complexes have very similar electronic configurations. However, the phosphorescence decay efficiencies of CM-Ru-bpy excited states are about twice those of the conventional Ru-bpy analogues. In contrast to the similar 3MLCT excited state electronic configurations of the two classes of complexes, the CM-Ru-bpy chromophores have much broader visible region MLCT absorptions resulting from several overlapping transitions, even at 87 K. The emitting excited-state emission efficiencies depend on spin-orbit coupling (SOC) mediated intensity stealing from singlet excited states, and this work explores the relationship between the phosphorescence efficiency and visible region absorption spectra of Ru-bpy 3MLCT excited states in the weak SOC limit. The intrinsic 3MLCT emission efficiency, ιem, depends on mixing with singlet excited states whose RuIII-dπ-orbital angular momenta differ from that of the emitting state. DFT modeling of the 1MLCT excited-state electronic configurations that contribute significantly to the lowest energy absorption bands have RuIII-dπ orbitals that differ from those of their emitting 3MLCT excited states. This leads to a very close relationship between ιem and the lowest energy MLCT band absorptivities in Ru-bpy chromophores. Thus, the larger number of 1MLCT transitions that contribute to the lowest energy absorption bands accounts for the enhanced phosphorescence efficiency of Ru-bpy complexes with cyclometalated ancillary ligands.

3.
J Phys Chem A ; 122(48): 9251-9266, 2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30387605

RESUMEN

The rate of visible light photoionization of the tris(bipyridine)ruthenium(II) triplet metal-to-ligand charge-transfer excited state (3MLCT) is very strongly dependent on the acid concentration in aqueous solution, and the pattern of this dependence is similar to that reported for the photoionization of iodide. With 405 nm visible irradiation of 3MLCT, less than 15% of the photoionized products appear as free solvated electrons in bulk solution, while more than 75% of the photoproducts appear to be solvent-separated, (oxidized substrate)-electron ion pairs that efficiently recombine with the photo-oxidized complex in the absence of an electron scavenger. The quantum yield of free solvated electrons generated by these 405 nm irradiations is approximately 0.004, but the net quantum yield of scavengeable electrons is estimated to be about 0.04. A visible-region photoionization threshold energy for the 3MLCT is consistent with thermodynamic expectations, and similar behavior is expected for many redox-active complexes.

4.
Inorg Chem ; 57(13): 7881-7891, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29882662

RESUMEN

Two new Re(I)- and Ru(II)-based inhibitors were synthesized with the formulas [Re(phen)(CO)3(1)](OTf) (7; phen = 1,10-phenanthroline, OTf = trifluoromethanesulfonate) and [Ru(bpy)2(2)](Cl)2 (8; bpy = 2,2'-bipyridine), where 1 and 2 are the analogues of CLIK-148, an epoxysuccinyl-based cysteine cathepsin L inhibitor (CTSL). Compounds 7 and 8 were characterized using various spectroscopic techniques and elemental analysis; 7 and 8 both show exceptionally long excited state lifetimes. Re(I)-based complex 7 inhibits CTSL in the low nanomolar range, affording a greater than 16-fold enhancement of potency relative to the free inhibitor 1 with a second-order rate constant of 211000 ± 42000 M-1 s-1. Irreversible ligation of 7 to papain, a model of CTSL, was analyzed with mass spectroscopy, and the major peak shown at 24283 au corresponds to that of papain-1-Re(CO)3(phen). Compound 7 was well tolerated by DU-145 prostate cancer cells, with toxicity evident only at high concentrations. Treatment of DU-145 cells with 7 followed by imaging via confocal microscopy showed substantial intracellular fluorescence that can be blocked by the known CTSL inhibitor CLIK-148, consistent with the ability of 7 to label CTSL in living cells. Overall this study reveals that a Re(I) complex can be attached to an enzyme inhibitor and enhance potency and selectivity for a medicinally important target, while at the same time allowing new avenues for tracking and quantification due to long excited state lifetimes and non-native element composition.


Asunto(s)
Catepsina L/antagonistas & inhibidores , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Renio/química , Rutenio/química , Catepsina L/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Sustancias Luminiscentes/química , Sustancias Luminiscentes/farmacología , Modelos Moleculares , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Conformación Proteica
5.
Inorg Chem ; 55(15): 7341-55, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27437560

RESUMEN

Metal to ligand charge-transfer (MLCT) excited state emission quantum yields, ϕem, are reported in 77 K glasses for a series of pentaammine and tetraammine ruthenium(II) complexes with monodentate aromatic acceptor ligands (Ru-MDA) such as pyridine and pyrazine. These quantum yields are only about 0.2-1% of those found for their Ru-bpy (bpy = 2,2'-bipyridine) analogs in similar excited state energy ranges (hνem). The excited state energy dependencies of the emission intensity are characterized by mean radiative decay rate constants, kRAD, resolved from ϕem/τobs = kRAD (τobs = the observed emission decay lifetime; τobs(-1) = kRAD + kNRD; kNRD = nonradiative decay rate constant). Except for the Ru-pz chromophores in alcohol glasses, the values of kNRD for the Ru-MDA chromophores are slightly smaller, and their dependences on excited state energies are very similar to those of related Ru-bpy chromophores. In principle, one expects kRAD to be proportional to the product of (hνem)(3) and the square of the transition dipole moment (Me,g).(2) However, from experimental studies of Ru-bpy chromophores, an additional hνem dependence has been found that originates in an intensity stealing from a higher energy excited state with a much larger value of Me,g. This additional hνem dependence is not present in the kRAD energy dependence for Ru-MDA chromophores in the same energy regime. Intensity stealing in the phosphorescence of these complexes is necessary since the triplet-to-singlet transition is only allowed through spin-orbit coupling and since the density functional theory modeling implicates configurational mixing between states in the triplet spin manifold; this is treated by setting Me,g equal to the product of a mixing coefficient and the difference between the molecular dipole moments of the states involved, which implicates an experimental first order dependence of kRAD on hνem. The failure to observe intensity stealing for the Ru-MDA complexes suggests that their weak emissions are more typical of "pure" (or unmixed) (3)MLCT excited states.

6.
Inorg Chem ; 54(17): 8495-508, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26302226

RESUMEN

This is the first report of the 77 K triplet metal-to-ligand charge-transfer ((3)MLCT) emission spectra of pentaammine-MDA-ruthenium(II) ([Ru(NH3)5(MDA)](2+)) complexes, where MDA is a monodentate aromatic ligand. The emission spectra of these complexes and of the related trans-[Ru(NH3)4(MDA) (MDA')](2+) complexes are closely related, and their emission intensities are very weak. Density functional theory (DFT) calculations indicate that the energies of the lowest (3)MLCT excited states of Ru-MDA complexes are either similar to or lower than those of the lowest energy metal-centered excited states ((3)MC(X(Y))), that the barrier to internal conversion at 77 K is large compared to kBT, and that the (3)MC(X(Y)) excited states are weakly bound. The [Ru(NH3)5py](2+) complex is an exception to the general pattern: emission has been observed for the [Ru(ND3)5(d5-py)](2+) complex, but its lifetime is apparently very short. DFT modeling indicates that the excited state distortions of the different (3)MC excited states are very large and are in both Ru-ligand bonds along a single Cartesian axis for each different (3)MC excited state, nominally resulting in (3)MC(X(Y)), (3)MC((X)Y), and (3)MC(Z) lowest energy metal-centered states. The (3)MC(X(Y)) and (3)MC((X)Y) states appear to be the pseudo-Jahn-Teller distorted components of a (3)MC((XY)) state. The (3)MC(X(Y)) states are distorted up to 0.5 Šin each H3N-Ru-NH3 bond along a single Cartesian axis in the pentaammine and trans-tetraammine complexes, whereas the (3)MC(Z) states are found to be dissociative. DFT modeling of the (3)MLCT excited state of [Ru(NH3)5(py)](2+) indicates that the Ru center has a spin density of 1.24 at the (3)MLCT energy minimum and that the (3)MLCT → (3)MC(Z) crossing is smooth with a very small barrier (<0.5 kcal/mol) along the D3N-Ru-py distortion coordinate, implying strong (3)MLCT/(3)MC excited state configurational mixing. Furthermore, the DFT modeling indicates that the long-lived intermediate observed in earlier flash photolysis studies of [Ru(NH3)5py](2+) is a Ru(II)-(η(2)(C═C)-py) species.

7.
Inorg Chem ; 54(16): 8003-11, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26244447

RESUMEN

Metal complexes that release ligands upon photoexcitation are important tools for biological research and show great potential as highly specific therapeutics. Upon excitation with visible light, [Ru(TQA)(MeCN)2](2+) [TQA = tris(2-quinolinylmethyl)amine] exchanges one of the two acetonitriles (MeCNs), whereas [Ru(DPAbpy)MeCN](2+) [DPAbpy = N-(2,2'-bipyridin-6-yl)-N,N-bis(pyridin-2-ylmethyl)amine] does not release MeCN. Furthermore, [Ru(TQA)(MeCN)2](2+) is highly selective for release of the MeCN that is perpendicular to the plane of the two axial quinolines. Density functional theory calculations provide a clear explanation for the photodissociation behavior of these two complexes. Excitation by visible light and intersystem crossing leads to a six-coordinate (3)MLCT state. Dissociation of acetonitrile can occur after internal conversion to a dissociative (3)MC state, which has an occupied dσ* orbital that interacts in an antibonding fashion with acetonitrile. For [Ru(TQA)(MeCN)2](2+), the dissociative (3)MC state is lower than the (3)MLCT state. In contrast, the (3)MC state of [Ru(DPAbpy)MeCN](2+) that releases acetonitrile has an energy higher than that of the (3)MLCT state, indicating dissociation is unfavorable. These results are consistent with the experimental observations that efficient photodissociation of acetonitrile occurs for [Ru(TQA)(MeCN)2](2+) but not for [Ru(DPAbpy)MeCN](2+). For the release of the MeCN ligand in [Ru(TQA)(MeCN)2](2+) that is perpendicular to the axial quinoline rings, the (3)MLCT state has an occupied quinoline π* orbital that can interact with a dσ* Ru-NCCH3 antibonding orbital as the Ru-NCCH3 bond is stretched and the quinolines bend toward the departing acetonitrile. This reduces the barrier for the formation of the dissociative (3)MC state, leading to the selective photodissociation of this acetonitrile. By contrast, when the acetonitrile is in the plane of the quinolines or bpy, no interaction occurs between the ligand π* orbital and the dσ* Ru-NCCH3 orbital, resulting in high barriers for conversion to the corresponding (3)MC structures and no release of acetonitrile.


Asunto(s)
Acetonitrilos/química , Compuestos Organometálicos/química , Procesos Fotoquímicos , Piridinas/química , Teoría Cuántica , Rutenio/química , Ligandos , Modelos Moleculares , Conformación Molecular , Propiedades de Superficie
8.
J Phys Chem B ; 119(24): 7393-406, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25761649

RESUMEN

The variations in band shape with excited state energy found for the triplet metal to ligand charge transfer ((3)MLCT) emission spectra of ruthenium-bipyridine (Ru-bpy) chromophores at 77 K have been postulated to arise from excited state/excited state configurational mixing. This issue is more critically examined through the determination of the excited state energy dependence of the radiative rate constants (kRAD) for these emissions. Experimental values for kRAD were determined relative to known literature references for Ru-bpy complexes. When the lowest energy excited states are metal centered, kRAD can be anomalously small and such complexes have been identified using density functional theory (DFT) modeling. When such complexes are removed from the energy correlation, there is a strong (3)MLCT energy-dependent contribution to kRAD in addition to the expected classical energy cubed factor for complexes with excited state energies greater than 10 000 cm(-1). This correlates with the DFT calculations which show significant excited state electronic delocalization between a π(bpy-orbital) and a half-filled dπ*-(Ru(III)-orbital) for Ru-bpy complexes with (3)MLCT excited state energies greater than about 16 000 cm(-1). Overall, this work implicates the "stealing" of emission bandshapes as well as intensity from the higher energy, strongly allowed bpy-centered singlet ππ* excited state.

9.
Inorg Chem ; 52(17): 9774-90, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23952527

RESUMEN

The heretofore unknown emission properties of the metal-to-ligand charge-transfer (MLCT) excited states of several complexes with (ruthenium)(monodentate aromatic ligand, MDA) chromophores are given. Emission spectra and lifetimes in 77 K glasses are reported for several monometallic complexes of the type [Ru(NH3)(5-n)(L)(n)(MDA)](2+) and two bimetallic pyrazine (pz)-bridged [{Ru(NH3)(4-n)(L)(n)}2pz](4+) complexes (L = pz, pyridine, or a multipyridine ligand; MDA = pz or a substituted pyridine, Y-py). The emission maxima occur in the visible and near-IR spectral regions and have much more poorly resolved vibronic sidebands than do related complexes with Ru-bpy chromophores, and the excited-state lifetimes are characteristic of Ru-bpy MLCT excited states in this energy range. The emission yields of trans-[Ru(NH3)4(MDA)(pz)](2+) (MDA = py or pz) are less than 0.2%, and combined with the other observations, this implies that most of the excited-state quenching occurs in high-energy excited states whose population precedes that of the lowest-energy (3)MLCT excited state. The pz-bridged, bimetallic complexes have mixed-valence excited states, and they absorb and emit at lower energies than their monometallic analogues do.

10.
Inorg Chem ; 52(3): 1185-98, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23343436

RESUMEN

A computational approach for calculating the distortions in the lowest energy triplet metal to ligand charge-transfer ((3)MLCT = T(0)) excited states of ruthenium(II)-bipyridine (Ru-bpy) complexes is used to account for the patterns of large variations in vibronic sideband amplitudes found in the experimental 77 K emission spectra of complexes with different ancillary ligands (L). Monobipyridine, [Ru(L)(4)bpy](m+) complexes are targeted to simplify analysis. The range of known emission energies for this class of complexes is expanded with the 77 K spectra of the complexes with (L)(4) = bis-acetonylacetonate (emission onset at about 12,000 cm(-1)) and 1,4,8,11-tetrathiacyclotetradecane and tetrakis-acetonitrile (emission onsets at about 21,000 cm(-1)); no vibronic sidebands are resolved for the first of these, but they dominate the spectra of the last two. The computational modeling of excited-state distortions within a Franck-Condon approximation indicates that there are more than a dozen important distortion modes including metal-ligand modes (low frequency; lf) as well as predominately bpy modes (medium frequency; mf), and it simulates the observed 77 K emission spectral band shapes of selected complexes very well. This modeling shows that the relative importance of the mf modes increases very strongly as the T(0) energy increases. Furthermore, the calculated metal-centered SOMOs show a substantial bpy-π-orbital contribution for the complexes with the highest energy T(0). These features are attributed to configurational mixing between the diabatic MLCT and the bpy (3)ππ* excited states at the highest T(0) energies.


Asunto(s)
2,2'-Dipiridil/química , Compuestos Organometálicos/química , Teoría Cuántica , Rutenio/química , Temperatura , Ligandos , Estructura Molecular , Compuestos Organometálicos/síntesis química
11.
Inorg Chem ; 50(23): 11965-77, 2011 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-22066683

RESUMEN

The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2''-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.

12.
Inorg Chem ; 50(17): 8274-80, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21809814

RESUMEN

Electrochemical properties of cyanide-bridged metal squares, [Ru(4)](4+) and [Rh(2)-Ru(2)](6+), clearly demonstrate the role of the nearest (NN) metal moiety in mediating the next-nearest neighbor (NNN) metal-to-metal electronic coupling. The differences in electrochemical potentials for successive oxidations of equivalent Ru(II) centers in [Ru(4)](4+) are ΔE(1/2) = 217 mV and 256 mV and are related to intense, dual metal-to-metal-charge-transfer (MMCT) absorption bands. This contrasts with a small value of ΔE(1/2) = 77 mV and no MMCT absorption bands observed to accompany the oxidations of [Rh(2)-Ru(2)](6+). These observations demonstrate NN-mediated superexchange mixing by the linker Ru of NNN Ru(II) and Ru(III) moieties and that this mixing results in a NNN contribution to the ground state stabilization energy of about 90 ± 20 meV. In contrast, the classical Hush model for mixed valence complexes with the observed MMCT absorption parameters predicts a NNN stabilization energy of about 6 meV. The observations also indicate that the amount of charge delocalization per Ru(II)/Ru(III) pair is about 4 times greater for the NN than the NNN couples in these CN-bridged complexes, which is consistent with DFT modeling. A simple fourth-order secular determinant model is used to describe the effects of donor/acceptor mixing in these complexes.


Asunto(s)
Cianuros/química , Compuestos Organometálicos/química , Rutenio/química , Electroquímica , Electrones , Compuestos Organometálicos/síntesis química , Teoría Cuántica , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja Corta
13.
Inorg Chem ; 50(3): 969-77, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21214170

RESUMEN

A series of pyridine- and phenol-based ruthenium(II)-containing amphiphiles with bidentate ligands of the following types are reported: [(L(PyI))Ru(II)(bpy)(2)](PF(6))(2) (1), [(L(PyA))Ru(II)(bpy)(2)](PF(6))(2) (2), [(L(PhBuI))Ru(II)(bpy)(2)](PF(6)) (3), and [(L(PhClI))Ru(II)(bpy)(2)](PF(6)) (4). Species 1 and 2 are obtained by treatment of [Ru(bpy)(2)Cl(2)] with the ligands L(PyI) (N-(pyridine-2-ylmethylene)octadecan-1-amine) and L(PyA) (N-(pyridine-2-ylmethyl)octadecan-1-amine). The imine species 3 and 4 are synthesized by reaction of [Ru(bpy)(2)(CF(3)SO(3))(2)] with the amine ligands HL(PhBuA) (2,4-di-tert-butyl-6-((octadecylamino)methyl)phenol), and HL(PhClA) (2,4-dichloro-6-((octadecylamino)methyl)phenol). Compounds 1-4 are characterized by means of electrospray ionization (ESI(+)) mass spectrometry, elemental analyses, as well as electrochemical methods, infrared and UV-visible absorption and emission spectroscopies. The cyclic voltammograms (CVs) of 1-2 are marked by two successive processes around -1.78 and -2.27 V versus Fc(+)/Fc attributed to bipyridine reduction. A further ligand-centered reductive process is seen for 1. The Ru(II)/Ru(III) couple appears at 0.93 V versus Fc(+)/Fc. The phenolato-containing 3 and 4 species present relatively lower reduction potentials and more reversible redox behavior, along with Ru(II/III) and phenolate/phenoxyl oxidations. The interpretation of observed redox behavior is supported by density functional theory (DFT) calculations. Complexes 1-4 are surface-active as characterized by compression isotherms and Brewster angle microscopy. Species 1 and 2 show collapse pressures of about 29-32 mN·m(-1), and are strong candidates for the formation of redox-responsive monolayer films.

14.
Inorg Chem ; 49(20): 9095-7, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20853898

RESUMEN

The 77 K emission spectral maxima of bis(bipyridine)ruthenium(II) complexes are found to approach a limit at energies below about 14,000 cm(-1). There is also evidence for related low-energy excited-state limits in some other classes of ruthenium polypyridyl complexes. The shapes of the vibronic sidebands found in these limits differ from those of complexes that emit at higher energies. These low-energy excited states are not simple "charge-transfer" excited states and are analogous to ππ* excited states. The observations are consistent with effective ground state/excited state mixing matrix elements in the range of (5-10) × 10(3) cm(-1) for ruthenium polypyridine complexes.

15.
Inorg Chem ; 49(15): 6840-52, 2010 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-20614928

RESUMEN

The lowest energy metal to ligand charge transfer (MLCT) absorption bands found in ambient solutions of [Ru(NH(3))(4)(Y-py)(2)](2+) and [Ru(L)(2)(bpy)(2)](+) complexes (Y-py a pyridine ligand and (L)(n) a substituted acetonylacetonate, halide, am(m)ine, etc.) consist of two partly resolved absorption envelopes, MLCT(lo) and MLCT(hi). The lower energy absorption envelope, MLCT(lo), in these spectra has the larger amplitude for the bis-(Y-py) complexes, but the smaller amplitude for the bis-bpy the complexes. Time-dependent density functional theory (TD-DFT) approaches have been used to model 14 bis-bpy, three bis-(Y-py), and three mono-bpy complexes. The modeling indicates that the lowest unoccupied molecular orbital (LUMO) of each bis-(Y-py) complex corresponds to the antisymmetric combination of individual Y-py acceptor orbitals and that the transition involving the highest occupied molecular orbital (HOMO) and LUMO (HOMO-->LUMO) is the dominant contribution to MLCT(lo) in this class of complexes. The LUMO of each bis-bpy complex that contains a C(2) symmetry axis also corresponds largely to the antisymmetric combination of individual ligand acceptor orbitals, while the LUMOs are more complex when there is no C(2) axis; furthermore, the energy difference between the HOMO-->LUMO and HOMO-->LUMO+1 transitions is too small (<1000 cm(-1)) to resolve in the spectra of the bis-bpy complexes in ambient solutions. Relatively weak MLCT(lo) absorption contributions are found for all of the [Ru(L)(2)(bpy)(2)](m+) complexes examined, but they are experimentally best defined in the spectra of the (L)(2) = X-acac complexes. TD-DFT modeling of the HOMO-->LUMO transition of [Ru(L)(4)bpy](m+) complexes indicates that it is too weak to be detected and occurs at significantly lower energy (about 3000-5000 cm(-1)) than the observed MLCT absorptions. Since the chemical properties of MLCT excited states are generally correlated with the HOMO and/or LUMO properties of the complexes, such very weak HOMO-->LUMO transitions can complicate the use of spectroscopic information in their assessment. As an example, it is observed that the correlation lines between the absorption energy maxima and the differences in ground state oxidation and reduction potentials (DeltaE(1/2)) have much smaller slopes for the bis-bpy than the mono-bpy complexes. However, the observed MLCT(lo) and the calculated HOMO-->LUMO transitions of bis-bpy complexes correlate very similarly with DeltaE(1/2) and this indicates that it is the low energy and small amplitude component of the lowest energy MLCT absorption band that is most appropriately correlated with excited state chemistry, not the absorption maximum as is often assumed.

16.
Inorg Chem ; 48(7): 2818-29, 2009 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-19239263

RESUMEN

The emission spectrum of the tris-(2,2'-bipyridine)osmium(II) metal-to-ligand charge transfer (MLCT) excited-state frozen solution at 77 K differs qualitatively from that expected based on its reported resonance-Raman (rR) parameters in that (1) the dominant vibronic contributions to the emission spectrum are in the low frequency regime (corresponding to nuclear displacements in largely to metal-ligand vibrational modes) and these contributions are negligible in the rR; and (2) the amplitude of the emission sideband components that correspond to envelopes of largely bpy centered vibrational modes is about 40% of that expected (relative to the amplitude observed for the band origin) for a simple vibronic progression in these modes. The distortions in low frequency vibrational modes are attributable to configurational mixing between metal centered (LF) and MLCT excited states, and the small amplitudes of the bpy-mode vibronic components may be a consequence of some intrinsic differences of the distortions of the (3)MLCT and (1)MLCT excited states such as the zero-field splitting of the (3)MLCT excited state and the different distortions of these excited-state components.


Asunto(s)
Compuestos Organometálicos/química , Espectrometría Raman/métodos , 2,2'-Dipiridil/análogos & derivados , Electroquímica , Electrodos , Espectroscopía de Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Espectrofotometría Ultravioleta/instrumentación , Espectrofotometría Ultravioleta/métodos , Espectrometría Raman/instrumentación , Vibración
17.
Inorg Chem ; 47(23): 10921-34, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18975937

RESUMEN

Irradiations of the transition metal-to-transition metal charge transfer (MMCT) absorption bands of a series of cyanide-bridged chromium(III)-ruthenium(II) complexes at 77 K leads to near-infrared emission spectra of the corresponding chromium(II)-ruthenium(III) electron transfer excited states. The lifetimes of most of the MMCT excited states increase more than 10-fold when their am(m)ine ligands are perdueterated. These unique emissions have weak, low frequency vibronic sidebands that correspond to the small excited-state distortions in metal-ligand bonds that are characteristic of transition metal electron transfer involving only the non-bonding metal centered d-orbitals suggesting that the excited-state Cr(II) center has a triplet spin configuration. However, most of the electronically excited complexes probably have overall doublet spin multiplicity and exhibit an excitation energy dependent dual emission with the near in energy Cr(III)-centered and MMCT doublet excited states forming an unusual mixed valence pair.

18.
Inorg Chem ; 47(17): 7493-511, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18681425

RESUMEN

The 77 K emission spectra of 21 [Ru(L) 4bpy] ( m+ ) complexes for which the Ru/bpy metal-to-ligand-charge-transfer ( (3)MLCT) excited-state energies vary from 12 500 to 18 500 cm (-1) have vibronic contributions to their bandshapes that implicate excited-state distortions in low frequency ( lf; hnu lf < 1000 cm (-1)), largely metal-ligand vibrational modes which most likely result from configurational mixing between the (3)MLCT and a higher energy metal centered ( (3)LF) excited state. The amplitudes of the lf vibronic contributions are often comparable to, or sometimes greater than those of medium frequency ( mf; hnu mf > 1000 cm (-1)), largely bipyridine (bpy) vibrational modes, and for the [Ru(bpy) 3] (2+) and [Ru(NH 3) 4bpy] (2+) complexes they are consistent with previously reported resonance-Raman (rR) parameters. However, far smaller lf vibronic amplitudes in the rR parameters have been reported for [Os(bpy) 3 ] (2+), and this leads to a group frequency approach for interpreting the 77 K emission bandshapes of [Ru(L) 4bpy] ( m+ ) complexes with the vibronic contributions from mf vibrational modes referenced to the [Os(bpy) 3] (2+) rR parameters (OB3 model) and the envelope of lf vibronic components represented by a "progression" in an "equivalent" single vibrational mode ( lf1 model). The lf1 model is referenced to rR parameters reported for [Ru(NH 3) 4bpy] (2+). The observation of lf vibronic components indicates that the MLCT excited-state potential energy surfaces of Ru-bpy complexes are distorted by LF/MLCT excited-state/excited-state configurational mixing, but the emission spectra only probe the region near the (3)MLCT potential energy minimum, and the mixing can lead to larger distortions elsewhere with potential photochemical implications: (a) such distortions may labilize the (3)MLCT excited state; and (b) the lf vibrational modes may contribute to a temperature dependent pathway for nonradiative relaxation.

19.
J Phys Chem B ; 111(24): 6748-60, 2007 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-17439271

RESUMEN

The 77 K emission spectrum of trans-[(ms-Me6[14]aneN4)Cr(CNRu(NH3)5)2]5+ has components characteristic of ligand field (LF) and metal-to-metal charge transfer (MMCT) excited states (ms-Me6[14]aneN4=5,12-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). The LF component of the emission is best resolved for irradiations at appreciably higher energies than the MMCT absorption band, while only the MMCT emission is observed for irradiations on the low-energy side of the MMCT absorption band. The LF emission component from this complex has vibronic structure that is very similar to that of the trans-[(ms-Me6[14]aneN4)Cr(CN)2]+ parent, but it is red-shifted by 560 cm-1 and the bandwidths are much larger. The red shift and the larger bandwidths of the ruthenated complex are attributed to configurational mixing between the LF and MMCT excited states, and the inferred mixing parameters are shown to be consistent with the known electron-transfer properties of the Ru(NH3)5 moieties. The MMCT excited-state lifetime is about 1 micros at 77 K and am(m)ine perdeuteration of this complex leads to an isotope effect of kNH/kND approximately 15-20. However, the contribution of the N-H stretching vibration to the emission sideband is too weak for a single vibrational mode model to be consistent with the observed lifetimes or the isotope effect. These features are very similar to those reported previously (J. Phys. Chem. A 2004, 108, 5041) for the MMCT emission of trans-[([14]aneN4)Cr{CNRu(NH3)5}2]5+ ([14]aneN4=1,4,8,11-tetraazacyclotetradecane), with the exception that the higher energy LF emission was not well resolved in the earlier work. The energies of the charge transfer absorption and emission maxima of both of these Cr(CN)Ru complexes are very similar to those of [Ru(NH3)4bpy]2+, but the latter has a 50-fold shorter 77 K excited-state lifetime, a 10-fold smaller NH/ND isotope effect, and a very different structure of its vibronic sidebands. Thus, the vibronic sidebands imply that the dominant excited-state distortions are in the metal-ligand vibrational modes for the Cr(CN)Ru complexes and in the bipyridine vibrational modes for the [Ru(NH3)4bpy]2+ complex. While an "equivalent" single vibrational mode model based on the frequencies and amplitudes of the dominant distortion modes is not consistent the observed lifetimes, such models do appear to be a good basis for qualitatively distinguishing different classes of excited-state dynamic behavior. A multimode, multichannel model may be necessary to adequately describe the excited-state dynamics of these simple electron-transfer systems.

20.
Inorg Chem ; 45(16): 6282-97, 2006 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-16878938

RESUMEN

The variations in the nonchromophoric ligands of [Ru(L)4bpy]2+ complexes are shown to result in large changes in emission band shapes, even when the emission energies are similar. These changes in band shape are systematically examined by means of the generation of empirical reorganizational energy profiles (emreps) from the observed emission spectra (Xie, P.; et al. J. Phys. Chem. A 2005, 109, 4671), where these profiles provide convenient probes of the differences in distortions from the ground-state structures of the 2,2-bipyridine (bpy) ligands (for distortion modes near 1500 cm(-1)) in the metal-to-ligand charge-transfer (MLCT) excited states for a series of complexes with the same ruthenium(II) bipyridine chromophore. The bpy ligand is nearly planar in the X-ray structures of the complexes with (L)4 = (NH3)4, triethylenetetraamine (trien), and 1,4,7,10-tetraazacyclododecane ([12]aneN4). However, for (L)4 = 5,12-rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, the X-ray crystal structure shows that the bpy ligand is twisted in the ground state (a result of methyl/bpy stereochemical repulsion) and the emrep amplitude at about 1500 cm(-1) is significantly larger for this structure than for the complex with (L)4 = 1,4,8,11-tetraazacyclotetradecane, consistent with larger reorganizational energies of the bpy distortion modes in order to form a planar (bpy(-)) moiety in the excited state of the former. The trien and [12]aneN4 complexes have very nearly the same emission energies, yet the 40% smaller vibronic sideband intensity of the latter indicates that the MLCT excited state is significantly less distorted; this smaller distortion and the related shift in the distribution of distortion mode reorganizational energy amplitudes is apparently related to the 36-fold longer lifetime for (L)4 = [12]aneN4 than for (L)4 = trien. For the majority (77%) of the [Ru(L)4bpy]2+ complexes examined, there is a systematic decrease in emrep amplitudes near 1500 cm(-1), consistent with decreasing excited-state distortion, with the excited-state energy as is expected for ground state-excited state configurational mixing in a simple two-state model. However, the complexes with L = [12]aneN4, 1,4,7,10-tetraazacyclododeca-1-ene, and (py)4 all have smaller emrep amplitudes and thus less distorted excited states than related complexes with the same emission energy. The observations are not consistent with simple two-state models and seem to require an additional distortion induced by excited state-excited state configurational mixing in most complexes. Because the stereochemical constraints of the coordinated [12]aneN4 ligand restrict tetragonal distortions around the metal, configurational mixing of the 3MLCT excited state with a triplet ligand-field excited state of Ru(II) could account for some of the variations in excited-state distortion. The large number of vibrational distortion modes and their small vibrational reorganizational energies in these complexes indicate that a very large number of relaxation channels contribute to the variations in 3MLCT lifetimes and that the metal-ligand skeletal modes are likely to contribute to some of these channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA