Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Stem Cell ; 26(5): 755-765.e7, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386556

RESUMEN

Hematopoietic stem cells (HSCs) require highly regulated rates of protein synthesis, but it is unclear if they or lineage-committed progenitors preferentially recruit transcripts to translating ribosomes. We utilized polysome profiling, RNA sequencing, and whole-proteomic approaches to examine the translatome in LSK (Lin-Sca-1+c-Kit+) and myeloid progenitor (MP; Lin-Sca-1-c-Kit+) cells. Our studies show that LSKs exhibit low global translation but high translational efficiencies (TEs) of mRNAs required for HSC maintenance. In contrast, MPs activate translation in an mTOR-independent manner due, at least in part, to proteasomal degradation of mTOR by the E3 ubiquitin ligase c-Cbl. In the near absence of mTOR, CDK1 activates eIF4E-dependent translation in MPs through phosphorylation of 4E-BP1. Aberrant activation of mTOR expression and signaling in c-Cbl-deficient MPs results in increased mature myeloid lineage output. Overall, our data demonstrate that hematopoietic stem and progenitor cells (HSPCs) undergo translational reprogramming mediated by previously uncharacterized mechanisms of translational regulation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Proteómica , Células Madre Hematopoyéticas , Transducción de Señal , Serina-Treonina Quinasas TOR
2.
Sci Transl Med ; 9(374)2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123069

RESUMEN

Acute myeloid leukemia (AML) and the myelodysplastic syndromes (MDS) are initiated and sustained by self-renewing malignant stem cells; thus, eradication of AML and MDS stem cells is required for cure. We identified CD99 as a cell surface protein frequently overexpressed on AML and MDS stem cells. Expression of CD99 allows for prospective separation of leukemic stem cells (LSCs) from functionally normal hematopoietic stem cells in AML, and high CD99 expression on AML blasts enriches for functional LSCs as demonstrated by limiting dilution xenotransplant studies. Monoclonal antibodies (mAbs) targeting CD99 induce the death of AML and MDS cells in a SARC family kinase-dependent manner in the absence of immune effector cells or complement, and anti-CD99 mAbs exhibit antileukemic activity in AML xenografts. These data establish CD99 as a marker of AML and MDS stem cells, as well as a promising therapeutic target in these disorders.


Asunto(s)
Antígeno 12E7/metabolismo , Células Madre Hematopoyéticas/citología , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicos/metabolismo , Animales , Anticuerpos Monoclonales/química , Apoptosis , Membrana Celular/metabolismo , Separación Celular , Femenino , Citometría de Flujo , Genotipo , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Proyectos de Investigación , Resultado del Tratamiento
3.
J Biol Chem ; 289(47): 32526-37, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25261472

RESUMEN

Exosomes, also known as microvesicles (EMVs), are nano-sized membranous particles secreted from nearly all mammalian cell types. These nanoparticles play critical roles in many physiological processes including cell-cell signaling, immune activation, and suppression and are associated with disease states such as tumor progression. The biological functions of EMVs are highly dependent on their protein composition, which can dictate pathogenicity. Although some mechanisms have been proposed for the regulation of EMV protein trafficking, little attention has been paid to N-linked glycosylation as a potential sorting signal. Previous work from our laboratory found a conserved glycan signature for EMVs, which differed from that of the parent cell membranes, suggesting a potential role for glycosylation in EMV biogenesis. In this study, we further explore the role of glycosylation in EMV protein trafficking. We identify EMV glycoproteins and demonstrate alteration of their recruitment as a function of their glycosylation status upon pharmacological manipulation. Furthermore, we show that genetic manipulation of the glycosylation levels of a specific EMV glycoprotein, EWI-2, directly impacts its recruitment as a function of N-linked glycan sites. Taken together, our data provide strong evidence that N-linked glycosylation directs glycoprotein sorting into EMVs.


Asunto(s)
Exosomas/metabolismo , Glicoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Western Blotting , Línea Celular Tumoral , Membrana Celular/metabolismo , Glicoproteínas/genética , Glicosilación , Humanos , Proteínas de la Membrana/genética , Microscopía Fluorescente , Transporte de Proteínas , Interferencia de ARN , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 30/genética , Tetraspanina 30/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(11): 4338-43, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591635

RESUMEN

Cell surface glycans form a critical interface with the biological milieu, informing diverse processes from the inflammatory cascade to cellular migration. Assembly of discrete carbohydrate structures requires the coordinated activity of a repertoire of proteins, including glycosyltransferases and glycosidases. Little is known about the regulatory networks controlling this complex biosynthetic process. Recent work points to a role for microRNA (miRNA) in the regulation of specific glycan biosynthetic enzymes. Herein we take a unique systems-based approach to identify connections between miRNA and the glycome. By using our glycomic analysis platform, lectin microarrays, we identify glycosylation signatures in the NCI-60 cell panel that point to the glycome as a direct output of genomic information flow. Integrating our glycomic dataset with miRNA data, we map miRNA regulators onto genes in glycan biosynthetic pathways (glycogenes) that generate the observed glycan structures. We validate three of these predicted miRNA/glycogene regulatory networks: high mannose, fucose, and terminal ß-GalNAc, identifying miRNA regulation that would not have been observed by traditional bioinformatic methods. Overall, our work reveals critical nodes in the global glycosylation network accessible to miRNA regulation, providing a bridge between miRNA-mediated control of cell phenotype and the glycome.


Asunto(s)
Vías Biosintéticas/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , MicroARNs/metabolismo , Polisacáridos/biosíntesis , Western Blotting , Línea Celular , Regulación Enzimológica de la Expresión Génica/genética , Glicómica/métodos , Glicosilación/efectos de los fármacos , Humanos , Luciferasas , MicroARNs/farmacología , Análisis por Micromatrices , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa , Biología de Sistemas/métodos
5.
Nat Med ; 18(2): 315-21, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22245781

RESUMEN

Barrett's esophagus is an example of a pre-invasive state, for which current endoscopic surveillance methods to detect dysplasia are time consuming and inadequate. The prognosis of cancer arising in Barrett's esophagus is improved by early detection at the stage of mucosal carcinoma or high-grade dysplasia. Molecular imaging methods could revolutionize the detection of dysplasia, provided they permit a wide field of view and highlight abnormalities in real time. We show here that cell-surface glycans are altered in the progression from Barrett's esophagus to adenocarcinoma and lead to specific changes in lectin binding patterns. We chose wheat germ agglutinin as a candidate lectin with clinical potential. The binding of wheat germ agglutinin to human tissue was determined to be specific, and we validated this specific binding by successful endoscopic visualization of high-grade dysplastic lesions, which were not detectable by conventional endoscopy, with a high signal-to-background ratio of over 5.


Asunto(s)
Esófago de Barrett/diagnóstico , Esofagoscopía/métodos , Imagen Molecular/métodos , Aglutininas del Germen de Trigo , Anciano , Anciano de 80 o más Años , Esófago de Barrett/patología , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patología , Esófago/metabolismo , Esófago/patología , Femenino , Fluorescencia , Glicoesfingolípidos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/patología , Aglutininas del Germen de Trigo/metabolismo
6.
J Proteome Res ; 10(10): 4624-33, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21859146

RESUMEN

Microvesicles (exosomes) are important mediators of intercellular communication, playing a role in immune regulation, cancer progression, and the spread of infectious agents. The biological functions of these small vesicles are dependent on their composition, which is regulated by mechanisms that are not well understood. Although numerous proteomic studies of these particles exist, little is known about their glycosylation. Carbohydrates are involved in protein trafficking and cellular recognition. Glycomic analysis may thus provide valuable insights into microvesicle biology. In this study, we analyzed glycosylation patterns of microvesicles derived from a variety of biological sources using lectin microarray technology. Comparison of the microvesicle glycomes with their parent cell membranes revealed both enrichment and depletion of specific glycan epitopes in these particles. These include enrichment in high mannose, polylactosamine, α-2,6 sialic acid, and complex N-linked glycans and exclusion of terminal blood group A and B antigens. The polylactosamine signature derives from distinct glycoprotein cohorts in microvesicles of different origins. Taken together, our data point to the emergence of microvesicles from a specific membrane microdomain, implying a role for glycosylation in microvesicle protein sorting.


Asunto(s)
Leche Humana/metabolismo , Polisacáridos/química , Proteómica/métodos , Adulto , Carbohidratos/química , Línea Celular Tumoral , Membrana Celular/metabolismo , Exosomas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Glicómica , Glicósido Hidrolasas/química , Glicosilación , Humanos , Células Jurkat , Lectinas/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación
7.
Science ; 323(5913): 512-6, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19164750

RESUMEN

Membrane fusion between vesicles and target membranes involves the zippering of a four-helix bundle generated by constituent helices derived from target- and vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). In neurons, the protein complexin clamps otherwise spontaneous fusion by SNARE proteins, allowing neurotransmitters and other mediators to be secreted when and where they are needed as this clamp is released. The membrane-proximal accessory helix of complexin is necessary for clamping, but its mechanism of action is unknown. Here, we present experiments using a reconstituted fusion system that suggest a simple model in which the complexin accessory helix forms an alternative four-helix bundle with the target-SNARE near the membrane, preventing the vesicle-SNARE from completing its zippering.


Asunto(s)
Fusión de Membrana , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
8.
J Biol Chem ; 283(30): 21211-9, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18499660

RESUMEN

In regulated exocytosis, the core membrane fusion machinery proteins, the SNARE proteins, are assisted by a group of regulatory factors in order to couple membrane fusion to an increase of intracellular calcium ion (Ca(2+)) concentration. Complexin-I and synaptotagmin-I have been shown to be key elements for this tightly regulated process. Many studies suggest that complexin-I can arrest the fusion reaction and that synaptotagmin-I can release the complexin-I blockage in a calcium-dependent manner. Although the actual molecular mechanism by which they exert their function is still unknown, recent in vivo experiments postulate that domains of complexin-I produce different effects on neurotransmitter release. Herein, by using an in vitro flipped SNARE cell fusion assay, we have identified and characterized the minimal functional domains of complexin-I necessary to couple calcium and synaptotagmin-I to membrane fusion. Moreover, we provide evidence that other isoforms of complexin, complexin-II, -III, and -IV, can also be functionally coupled to synaptotagmin-I and calcium. These correspond closely to results from in vivo experiments, providing further validation of the physiological relevance of the flipped SNARE system.


Asunto(s)
Calcio/química , Proteínas SNARE/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Células HeLa , Humanos , Iones , Modelos Biológicos , Conformación Molecular , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Neurotransmisores/metabolismo , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Sinaptotagmina I/química
9.
Nat Struct Mol Biol ; 14(10): 890-6, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17906638

RESUMEN

Membrane fusion occurs when SNAREpins fold up between lipid bilayers. How much energy is generated during SNAREpin folding and how this energy is coupled to the fusion of apposing membranes is unknown. We have used a surface forces apparatus to determine the energetics and dynamics of SNAREpin formation and characterize the different intermediate structures sampled by cognate SNAREs in the course of their assembly. The interaction energy-versus-distance profiles of assembling SNAREpins reveal that SNARE motifs begin to interact when the membranes are 8 nm apart. Even after very close approach of the bilayers (approximately 2-4 nm), the SNAREpins remain partly unstructured in their membrane-proximal region. The energy stabilizing a single SNAREpin in this configuration (35 k(B)T) corresponds closely with the energy needed to fuse outer but not inner leaflets (hemifusion) of pure lipid bilayers (40-50 k(B)T).


Asunto(s)
Membrana Dobles de Lípidos , Fusión de Membrana/fisiología , Pliegue de Proteína , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Animales , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Ratones , Conformación Proteica , Ratas , Proteínas SNARE/genética , Propiedades de Superficie
10.
Science ; 313(5787): 676-80, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16794037

RESUMEN

During neurotransmitter release at the synapse, influx of calcium ions stimulates the release of neurotransmitter. However, the mechanism by which synaptic vesicle fusion is coupled to calcium has been unclear, despite the identification of both the core fusion machinery [soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)] and the principal calcium sensor (synaptotagmin). Here, we describe what may represent a basic principle of the coupling mechanism: a reversible clamping protein (complexin) that can freeze the SNAREpin, an assembled fusion-competent intermediate en route to fusion. When calcium binds to the calcium sensor synaptotagmin, the clamp would then be released. SNARE proteins, and key regulators like synaptotagmin and complexin, can be ectopically expressed on the cell surface. Cells expressing such "flipped" synaptic SNAREs fuse constitutively, but when we coexpressed complexin, fusion was blocked. Adding back calcium triggered fusion from this intermediate in the presence of synaptotagmin.


Asunto(s)
Exocitosis , Proteínas del Tejido Nervioso/metabolismo , Proteínas SNARE/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Células HeLa , Humanos , Ratas , Proteínas Recombinantes/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagminas/metabolismo , Fosfolipasas de Tipo C/metabolismo
11.
Proc Natl Acad Sci U S A ; 101(14): 4815-20, 2004 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-15044687

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) catalyze compartment-specific membrane fusion. Whereas most SNAREs are bona fide type II membrane proteins, Ykt6 lacks a proteinaceous membrane anchor but contains a prenylation consensus motif (CAAX box) and exists in an inactive cytosolic and an active membrane-bound form. We demonstrate that both forms are farnesylated at the carboxyl-terminal cysteine of the CCAIM sequence. Farnesylation is the prerequisite for subsequent palmitoylation of the upstream cysteine, which permits stable membrane association of Ykt6. The double-lipid modification and membrane association is crucial for intra-Golgi transport in vitro and cell homeostasis/survival in vivo. The membrane recruitment and palmitoylation is controlled by the N-terminal domain of Ykt6, which interacts with the SNARE motif, keeping it in an inactive closed conformation. Together, these results suggest that conformational changes control the lipid modification and function of Ykt6. Considering the essential and central role of Ykt6 in the secretory pathway, this spatial and functional cycle might provide a mechanism to regulate the rate of intracellular membrane flow.


Asunto(s)
Proteínas de la Membrana/metabolismo , Ácido Palmítico/metabolismo , Proteínas de Transporte Vesicular , Citosol/metabolismo , Microscopía Fluorescente , Plásmidos , Proteínas SNARE
12.
Mol Biol Cell ; 15(4): 1506-18, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14742712

RESUMEN

Genetic and biochemical evidence has established that a SNARE complex consisting of syntaxin 5 (Sed5)-mYkt6 (Ykt6)-GOS28 (Gos1)-GS15 (Sft1) is required for transport of proteins across the Golgi stack in animals (yeast). We have utilized quantitative immunogold labeling to establish the cis-trans distribution of the v-SNARE GS15 and the t-SNARE subunits GOS28 and syntaxin 5. Whereas the distribution of the t-SNARE is nearly even across the Golgi stack from the cis to the trans side, the v-SNARE GS15 is present in a gradient of increasing concentration toward the trans face of the stack. This contrasts with a second distinct SNARE complex, also required for intra-Golgi transport, consisting of syntaxin 5 (Sed5)-membrin (Bos1)-ERS24 (Sec22)-rBet1 (Bet1), whose v-(rBet1) and t-SNARE subunits (membrin and ERS24), progressively decrease in concentration toward the trans face. Transport within the stack therefore appears to utilize countercurrent gradients of two Golgi SNAREpins and may involve a mechanism akin to homotypic fusion.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de Transporte Vesicular/química , Animales , Transporte Biológico , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/metabolismo , Sistema Libre de Células , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Inmunohistoquímica , Riñón/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Microscopía Fluorescente , Modelos Biológicos , Pruebas de Precipitina , Proteínas Qa-SNARE , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteínas R-SNARE , Ratas , Proteínas SNARE , Proteínas de Transporte Vesicular/metabolismo
13.
J Cell Biol ; 164(1): 79-88, 2004 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-14699088

RESUMEN

A new functional class of SNAREs, designated inhibitory SNAREs (i-SNAREs), is described here. An i-SNARE inhibits fusion by substituting for or binding to a subunit of a fusogenic SNAREpin to form a nonfusogenic complex. Golgi-localized SNAREs were tested for i-SNARE activity by adding them as a fifth SNARE together with four other SNAREs that mediate Golgi fusion reactions. A striking pattern emerges in which certain subunits of the cis-Golgi SNAREpin function as i-SNAREs that inhibit fusion mediated by the trans-Golgi SNAREpin, and vice versa. Although the opposing distributions of the cis- and trans-Golgi SNAREs themselves could provide for a countercurrent fusion pattern in the Golgi stack, the gradients involved would be strongly sharpened by the complementary countercurrent distributions of the i-SNAREs.


Asunto(s)
Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular , Sitios de Unión/fisiología , Aparato de Golgi/ultraestructura , Membranas Intracelulares/química , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Unión Proteica/fisiología , Subunidades de Proteína/metabolismo , Transporte de Proteínas/fisiología , Proteínas SNARE , Transducción de Señal/fisiología , Red trans-Golgi/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA